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3. 

INTRODUCTION 

Kalman filters and smoothers are powerful algorithms that provide efficient solutions to many 
problems in the time series domain. This is certainly the case for some benchmarking approaches. 
We present in this paper how we have translated the versatility of the state-space forms and of the 
connected algorithms into software modules (called below "library"). For the time being, our library 
only tackles univariate state-space series. In spite of this important restriction, it can already be 
applied in many useful applications. 
 
A large part of the work is devoted to the treatment of state-space forms in general. Special 
attention is paid to the initialisation of non stationary models, on the handling of the regression 
effects and on the definition of the likelihood. The theoretical developments follow the approach of 
Durbin and Koopman (2001, 2003).  
 
As far as benchmarking is concerned, the present library concentrates on the estimation through 
single regression methods. It is much in the line of the work of Proietti (2004). That choice is mainly 
motivated by the wish to replace existing implementations of traditional algorithms. The new 
solution presents more alternatives (including the estimation of log-transformed models) and 
several diagnostics tools.  
 
The work is on the frontier between recent statistical developments and software design; the  
structure of the paper reflects that duality. In the first paragraph, we briefly discuss the general 
technological choices necessary to ensure a high reusability. The second paragraph describes the 
theoretical framework; details on the different state-space representations and on the algorithms for 
filtering and smoothing are provided. Paragraph 3 outlines how the theory is translated into an 
extensible object-model. Finally two modules built on the library are briefly presented in the last 
paragraph. 
 
The note is written as as technical documentation of the library for advanced users. In that 
perspective, most of the mathematical developments and of the discussion around the statistical 
methods for benchmarking have been deliberately omitted. Useful information on those topics can 
be found in many other papers.   
 
The library and the different applications that use it can be freely dowloaded from a WEB server of  
the National Bank of Belgium (http://www.nbb.be/app/dqrd/index.htm). 
 

1 TECHNOLOGY 

The capability of reusing previous modules or of extending them to meet new situations constitutes 
a very important point in software development. This is of course necessary to be able to respond 
quickly to new needs. From the user's point of view, it is also a way to build a coherent framework 
for his work. 
 
Statistical algorithms must often be integrated in completely different tasks. Benchmarking, for 
example, can be used in batch processing of many series; it can also be embedded in semi-
automated tasks like the production of Quarterly National Accounts; advanced graphical interfaces 
should also be available for detailed analysis, while some facilities for more complex studies like 
Monte Carlo experiments are an interesting feature. 
 
It is unlikely to find a single product that can respond efficiently to all those kinds of questions. 
However, as far as technology is concerned, object-oriented (OO) components based on standard 
technologies  form a very interesting solution.  
 
If their underlying technology is largely accepted by the software realm,  OO components can quite 
easily be embedded in many different environments, from commercial software to a variety of tools 
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for in-house developments. Java is a popular solution when portability matters, while .NET 
becomes the norm for Windows applications. We provide implementations in both technologies, 
using the same object-model. It should also be stressed that, compared to other more traditional 
development languages like FORTRAN or C, those technologies yield much more robust solutions. 
 
The OO paradigm is often limited to data encapsulation. While this feature is extremely useful for 
hiding the details of an implementation and for managing its complexity, the other characteristics of 
OO appear at least as important once extensibility is put forward. 
Polymorphism allows the building of generic algorithms, based on general concepts rather than on 
specific cases, while inheritance allows specialisation or modification of existing implementations. 
These last two aspects of OO, and more specifically polymorphism permits a reasoning very close 
to the theoretical developments. They are widely exploited in the design of our framework on the 
state-space forms (SSF henceforth) and on the Kalman filters and smoothers (KF henceforth). 
 

2 THEORETICAL FRAMEWORK 

2.1 BASIC UNIVARIATE STATE SPACE MODEL 

 
A detailed presentation of the theoretical framework on SSF is necessary not only to be able to 
interpret correctly the results and to compare them to other solutions, but also to understand the 
organization of the library, its limits as well as its capabilities of extension. 
After the definition of the basic model, the formulae of the main KF algorithms are listed. We finally 
discuss how we deal with regression effects 
 
2.1.1 DEFINITION 
 
While the general linear gaussian state-space model can be written in many different ways, we 
shall use the presentation of Durbin and Koopman (DK henceforth, 2001), and we shall restrict it, 
as in the current library, to the univariate case. 
 
Measurement equation: 
 

( )tt

tttt

hN

Zy
2,0~ σε

εα +=
 

 
State equation: 
 

( )tt

tttt

VN

T
2

1

,0~ ση

ηαα +=+
 

 
with  nt <≤0
 

ty  is the observation at period t,  is the r x 1 state vector.  and tα tε tη  are assumed to be serially 

independent and independent of each other at all time points. 
 
The residuals of the state equation will often be modelised as 
 

( )tt

tt

QN

RW
2,0~ σξ

ξη =
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where tξ  is a vector of e x 1 residuals (0 < e ≤ r),  is a e x e covariance matrix,  is a m x e 

matrix (weights of the disturbances) and  is a r x m matrix composed of columns of , that 

identifies the items of the state vector modified by the residuals.  

tQ tW

tR rI

 
 (Diffuse) Initialisation 
 
The initial conditions of the filter are defined as follows: 
 

( )
( )

( )
( )
( ) 0,cov

var

0
var

0
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2

0

0

0,0

0

0000

=

=

=

=
=

++=
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where κ is arbitrary large1. 

*P  is the variance of the stationary elements of the initial state vector and  models the diffuse 

part. Both matrices are r x r
∞Pκ

2. We also suppose that the rank of   is d. ∞P
 
In summary, the matrices of the system are: 
 
Matrices   Dimensions Meaning 

ty  scalar Observation 

tα  r x 1 State vector 

tε  scalar disturbance of the observation equation 

tη  e x 1 disturbances of the state equation 

th  scalar variance of , apart from the  factor tε
2σ

tQ  e x e covariance of , apart from the  factor 
tη

2σ
(partim, see below) 

tW  m x e part of the covariance of (weights of disturbances) 
tη

tR  r x m part of the covariance of (columns of identity) 
tη

tV  r x r The full covariance matrix of the disturbances of the state 
equation )( ttttt RWQWR ′′′= , apart from the  factor 2σ

tS  r x e ttt QWR= . Auxiliary matrix used for smoothing 

tZ  1 x r measurement matrix 

tT  r x r transition matrix 

0a  r x 1 initial state 

0*,P  r x r covariance of the stationary part of the initial state, apart 
from the  factor 2σ

0,∞P  r x r covariance (apart from a factor) of the diffuse part of the 
initial state 

                                                      
1 The  factor is absorbed in 2σ κ 
2 We do not require that diffuse/non diffuse elements reside in separate items of the initial state vector. 
Diffuse/non diffuse effects must simply be splitsed in independent parts. 
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2.1.2 FILTERING, SMOOTHING AND LIKELIHOOD EVALUATION 
 
State space models are efficiently treated by KF. The augmented KF of De Jong (91) and a variant 
due to Gomez and Maravall (93) can be used to provide an exact solution when the model contains 
elements with unspecified distributions. However, the approach of Durbin and Koopman, used in 
our modules, provides simpler and more efficient algorithms. 
 
This paragraph recapitulates the recursions for filtering, (disturbance) smoothing and likelihood 
evaluation. Apart from some rearrangements, their mathematical derivations can be found in DK 
(2001, 2003).  
Those small rearrangements pursue several goals: getting a faster processing through vector 
computation,  ensuring the symmetry of covariance matrices and limiting the number of patterns in 
the derivations (see § 3.1.1 for a discussion on that point). 
The library is a straightforward application of the formulae given below3: 
 
2.1.2.1 Recursions for filtering 
 
We use the following notations: 
 

( )
( )
( ) ttttttt

ttt

ttt

aZyyyyEyv

yyP

yyEa

−=−=

=

=

−

++

++

10

011

011

,...,

,...,var

,...,

α

α

 

 
Normal recursions 
  
When  is not missing the normal recursions are ty
 

tttttttt

tttttt

ttt

ttt

tttt

ttttt

VfCCTPTP
fvCaTa

MTC
ZPM
aZyv
hZPZf

+′−′=
+=

=

′=
−=

+′=

+

+

/
/

1

1

 

 
If  is missing, they are simplified to ty

 

ttttt

ttt

VTPTP
aTa

+′=
=

+

+

1

1  

 
Diffuse recursions 
 
Diffuse recursion appends during the first periods; the length of the diffuse part is dynamically 
determined during the filtering process. When  is not missing, a first set of formulae is defined by ty
 

                                                      
3 is set to 1 (except for the likelihood evaluation). <A> stands for A+A'. 2σ
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tttt

ttt

ttt

tttt

ttt

ttt

ttttt
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Following the value of , two cases have then to be considered. When ∞f 0≠∞f , we have 
 

VfCCffCCTPTP

fCCTPTP
fCvaTa

tttttttttt

ttttttt

tttttt

t
+><−+′=

−′=

+=
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2
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,,1

/'/'

/'
/

,

 

 
On the other hand, when ,  0=∞f

 

tttttttt

tttt

tttttt

VfCCTPTP
TPTP

fvCaTa

+−′=

′=

+=

∞∞+

∞+∞

+

*,,,*,1*,

,1,

*,*,1

/'

/
 

 
When  is missing, the formulae are much simpler: ty
 

ttttt

tttt

ttt

VTPTP
TPTP

aTa

+′=

′=
=

+

∞+∞

+

*,1*,

,1,

1

 

 
The other quantities are not computed. 
 
2.1.2.2 Recursions for (disturbance) smoothing 
 
(n) indicates formulae for normal smoothing, (d) for disturbance smoothing, while common 
formulae are noted (c). 
  
We use the following notations: 
 

( )
( )

( )
( )

ntt

ntt

ntt

ntt

yyEe

yyEu

yyP

yyEa

,...,

,...,

,...,var~
,...,~

0

0

0

0

ε

η

α

α

=

=

=

=

 

 
 

tu  is presented as a row-matrix. , , , , ,  , , , , ,  are 

quantities obtained in the filtering process. 
tv tf ta tP tC tf , ∞ tf*, tP , ∞ tP*, tC , ∞ tC*, 
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tr ,  and  are auxiliary row-matrices, while , ,  and  are auxiliary square 

matrices. 
tr ,0 tr ,1 tN tN ,0 tN ,1 tN ,2

Except  and  which are initialised with the last values of  and , those objects are set 

to 0 at the beginning of the process. 
tr ,0 tN ,0 tr tN

It is to be noted that the recursions on the variances (in brackets), which are by far the most time 
consuming, may be omitted. 
 
Normal recursions 
 
When   is not missing, the normal recursions are ty
 

( )
[ ]
[ ]ttttttt

tttt

tttttttt

tt

LNLfZZN
ZKTL

TrZKrfvr
fC

′+′=
−=

+−=
=

−

−

/   (c)
   (c)

/   (c)
/K   (c)

1

1

t

. 

 
The smoothed states and their variances are given by 

 

[ ]ttttt

tttt

PNPPP

Praa
′−=

+′=′
~   (n)

~   (n)
, 

 
while the smoothed disturbances and their variances are expressed as 

 
( )

( ) ( )[ ]
( )[ ]tttt

tttttt

t

ttttt

SNSQu
KNKfhhe

Sru
hKrfve

′−=

′+−=

=
−=

t

2
t

tt

t

var   (d)
/1var   (d)

   (d)
/   (d)

. 

 
When  is missing, the recursions are reduced to ty

 

[ ]tttt

ttt

TNTN
Trr
′=

=

−

−

1

1

   (c)
   (c)

, 

 
the smoothed states are computed as above, and the smoothed disturbances are missing. 

 
 
Diffuse recursions 
 
For the initial time period, when  is not missing, we consider two cases as we did in the filtering. 

If , the recursion formulae are 
ty

0≠∞f
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The smoothed states and their variances are given by 
 

[ ]ttttttttttt

tttttt

PNPPNPPNPPP
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,,2,,,1*,*,*,*,*,

,,1*,,0
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The smoothed disturbances and their variances are expressed as 
 

( )[ ]
( )[ ] var  (d)

 var  (d)

   (d)
   (d)

,0t
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2

t
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When , the formulae become 0=∞f
 

[ ]
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−

−

tttt
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The smoothed states and their variances are derived as in the previous case, while the smoothed 
disturbances and their variances are given by formulae similar to those of the normal case 

 
( )

( ) ( )[ ]
( )[ ]tttt

tttttt

t

ttttt

SNSQu
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2
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When  is missing, the recursions are reduced to ty
 

[ ]
[ ]
[ ]tttt

tttt

tttt

ttt

ttt

TNTN
TNTN
TNTN

Trr
Trr

,21,2

,11,1
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′=
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The smoothed states are then computed as above, while the smoothed disturbances are missing. 
 
As usual, a fast estimation of the smoothed states is easily obtained from the smoothed 
disturbances4: 
 

[ ]ttttt uSaTa ′+=+
~~

1  

 
with the initialisation 
 

0,0,10*,0,000
~

∞++′=′ PrPraa . 

 
This last procedure cannot be applied when an estimation of the variances is needed. 
 
2.1.3 LIKELIHOOD EVALUATION 
 
Skipping items corresponding to missing values, the likelihood of the model (1) is easily obtained 
by means of the so-called prediction error decomposition : 
 

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

+++−= ∑∑∑
<

=

<

=

<

=

qt

t
t

nt

qt
t

nt

qt
ttd wfσσfvnyL

0

222 ln)/(2ln
2
1ln π  

 
where 
 

( )tt fw ,ln ∞=  if , 0, ≠∞ tf ( )tttt fσfvw *,
2

*,
2 ln)/( +=  otherwise. 

 
To simplify the notation, we shall suppose below that the d indexes for which  are at the 

front and we shall assimilate the other diffuse items to the non diffuse part. 

0, ≠∞ tf

 
Maximizing the likelihood for , we get 2σ
 

( ) ( )( )

( )dnfvσ
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dt
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t
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dt
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⎛
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⎭
⎬
⎫

⎩
⎨
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∑
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<

=
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=
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lnln1ˆln2ln
2
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0
,

2π
 

 
 
2.1.4 REGRESSORS EFFECTS  
 
                                                      
4  is dropped when the smoothed disturbances are missing. ttuS ′
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We consider in this paragraph a measurement equation enriched by regressors: 
 

ttttt XZy εβα ++= , (2) 

 
where  is the 1 x b row-matrix of regressors at time t, and tX β  is the b x 1 column-matrix of  

coefficients. Other parts of the model remain unchanged. 
 
We don't deal explicitly with regressors effects in the state equation. However such effects may 
always be moved in the the measurement equation by properly modifying them. 
The β  can be viewed as fixed but unknown (Rosenberg, 1973) or as diffused (De Jong, 1991). 
Unlike other potential undefined items of the initial state, which we always treat as diffuse, both 
cases are handled. 
 
DK propose two solutions for the estimation of that model (2001, § 6.2.2 and 6.2.3): by extending 
the state vector with the coefficients of the regressors (extended model) or by using an approach 
similar to the augmented KF (augmented model). Our library provides implementations for both 
solutions. 
 
 
2.1.4.1 Extended model5 
 
The state-space model of the extended model is written as follows: 
 

tttt

tttt

T
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ηαα

εα
~~~~
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1 +=

+=
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where 
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with the initial conditions 
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⎞
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⎛
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 . 

                                                      
5 The extended model should be used only in the case of diffuse regression effects. In the fixed case, we only 

have to replace  by ty βtt Xy − , with β  estimated otherwise. 
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This model can be handled exactly as any other model of type (1). Thus, usual algorithms for 
filtering, smoothing and likelihood evaluation remain valid. 
 
2.1.4.2 Augmented model 
 
Estimation by means of the augmented approach consists essentially of two stages.  
 

• In a first step, the KF is applied on  and on each regressors; the standardized residuals 

are obtained. 
ty

• The second step is simply an estimation of the OLS problem between the filtered series. 
De Jong (1991) solves it through normal equations, while Gomez-Maravall (1993) propose 
the use of the QR algorithm. The former better fits the case of models regularly updated 
with new observations, while the latter provides a more numerically stable solution.  

 
Our implementation follows the QR solution. It is formalized below: 
 

1. Filtering  with the DK algorithm. The n-d standardized residuals  are storedty tyv ,
6.  

2. Filtering of each regressor with the DK algorithm, reusing the gain matrices calculated in 1. 

The b arrays of (n-d) standardized residuals  are stored. txi
v ,

3. Solving the OLS problem ttXty vv ζβ += ,,  by the QR algorithm; it provides , its 

covariance matrix ( , where U  is the upper triangular matrix in the  

β̂

( ) 1−′= UU R  matrix of 
the decomposition), and a set of (n-d-b) independent residuals. 

 
Under the fixed unknown assumption, the profile likelihood equals: 
 

( ) ( )( )

)/(ˆ
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2
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0
,

2
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nt

bdt
t

dt

t
t
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dt
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−⎟
⎠

⎞
⎜
⎝

⎛
=

⎭
⎬
⎫

⎩
⎨
⎧
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∑

∑∑
<
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<

=
∞

<

=

σ

π
 

 
where  are the (n-d-b) independent residuals obtained from the QR decomposition. te
 
Under the diffuse assumption, the profile likelihood becomes: 
 

( ) ( )( )

)/(ˆ

lnlnln1ˆln2ln
2
1ln

22

0
,

2

bdne

UUffbdnnyL

nt

bdt
t

dt

t
t

nt

dt
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−−⎟
⎠

⎞
⎜
⎝

⎛
=

⎭
⎬
⎫

⎩
⎨
⎧ ′++++−−+−=

∑

∑∑
<

+=

<

=
∞

<

=

σ

σπ
 

 
where  is as above. As U  is a triangular matrix, its determinant is trivially obtained. te
 
This process is equivalent to the estimation through the augmented KF with collapsing followed by 
a QR decomposition, as developed by Gomez and Maravall and implemented in the software 
TRAMO. However, the initialisation problem is tackled here by means of the DK algorithm. 
 

                                                      
6 They correspond to the indexes where  0=∞f . 
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The extended approach and the augmented approach yield the same likelihood evaluation. Both 
solution present some advantages. The former produces recursive residuals and recursive 
estimates of the coefficients. Recursive residuals are serially uncorrelated  and easily interpretable, 
while recursive estimates are interesting for a study on the revisions. The latter is more stable and 
often faster. 
We use the extended model in the analysis stage while we prefer the augmented model during the  
optimization procedure. 
 

2.2 BENCHMARKING 

 
2.2.1 GENERALITIES 
 
The main goal of the present implementation of benchmarking is to provide a solution that 
encompasses popular techniques (Chow-Lin, Fernandez, Litterman, Denton, ...) 
Like Proietti (2004) we concentrate on single regression equations, with errors described by state-
space forms.  
The library gives solutions for the distribution of a flux variable as well as for the interpolation of a 
stock variable. Estimation of the latter doesn't require special devices; it just amounts to the familiar  
problem of missing observations. We shall not consider it in details. The distribution case is 
handled through the use of cumulator variables (see Harvey, 1989, § 6.3).  
We shall also discuss the problem of log-transformed models, for which we provide approximated 
and iterative solutions. This last point is once again largely inspired by the work of Proietti (2004). 
 
 
2.2.2 DISAGGREGATED TIME SERIES MODEL 
 
We suppose that the disaggregated time series admits a state space representation similar to (2). 
However, to simplify the derivation, we do not allow a disturbance term in the measurement 
equation7.  
 
In summary, the disaggregated model is   
 

[ ]

tttt

ttt

ttt

T
Z

Xy

ηαα
αµ

βµ

+=
=

+=

+1

 

 
with the other hypotheses as above. 
 
Apart from some assumptions on the initial values, the most popular disaggregation methods fit this 
form (see Proietti (2004) for a detailed discussion on that point); this is summarized in the following 
table: 
 
Methods Regressors Residuals ( tµ ) 

Chow-Lin constant + related series  ARIMA(1, 0, 0) 
Litterman [linear trend +] related series ARIMA(1, 1, 0) 
Fernandez [linear trend +] related series ARIMA(0, 1, 0) 
Denton (K)  ARIMA(0, K, 0) 
 
 

                                                      
7We can easily get around that  condition by adding the disturbance term, if any, to the state vector. 
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2.2.3 AGGREGATION 
 
2.2.3.1 State-space form 
 

In the distribution problem,  is not available. However, the temporally aggregated series is 
observed at a lower frequency. If we note  the number of high-frequency periods in one low-
frequency period, the aggregated series can be written

ty
q

8: 
 

∑
<

=
+=

qj

j
jqtt yY

0
 

 

For any series , we define the auxiliary cumulator variable . If tz
C
tz [ ]qt refers to the highest 

multiple of q lower or equal to t,  
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The cumulated series  is equal to  when 
C
ty tY 1+t  is a multiple of q and undefined elsewhere.  

We also define: 
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Thus, t
C
t

C
t zzz +=  and 0=Ctz  if t is a multiple of q. 

 
 

Seeing that the operator is linear, we can use the following state space representation for the 
cumulated series: 

( )C . 
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8 Like in the programming languages used in our developments (C++, Java, C#), we shall always consider 0-
based indexes: y(0) is the first observation of y, the place of  the first month in the year is 0, ... 
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with 0=tδ  if is a multiple of q, 1+t 1=tδ  otherwise. 

 
 
It is to be noted that the disaggregated series can be easily retrieved from the state vector of model 

(3) by means of the matrix ; we have indeed ( tZZ
t

0=µ ) [ ]βαµ ttt XZy
t

+= . 

 
 
2.2.3.2 Estimation of the aggregated model 
 
The estimation of the aggregated model by itself is a straighforward application of the KF on the 
"cumulated" model (3). 
 

As far as performances matter, the computing of the smoothed estimate )(~ nyEy tt =  of the 

disaggregated series requires some care. Depending on the presence of regressors and wether we 
need to obtain the variance of the smoothed series or not, we use the following schemes: 
 

• No regressors, disaggregated series only 

o Disturbance smoother on   
C
t
y

o tt t
Zy αµ

~~ =  

 
• No regressors, disaggregated series and its variance 

o Standard smoother on  
C
t
y

o tt t
Zy αµ

~~ =  

o 
tt

ZZy tt µµ α ′= )~var()~var(  

 
• Regressors, disaggregated series only 

o Disturbance smoother on .  β̂CC
tt
Xy −

o tt t
Zv αµ

~~ =  

o β̂~~
ttt Xvy +=  

 
• Regressors, disaggregated series and its variance 

o Standard smoother on  .  β̂CC
tt
Xy −

o tt t
Zv αµ

~~ =  

o 
tt

ZZv tt µµ α ′= )~var()~var(  

o Disturbance smoother on each cumulated regressor. tX
~

 are obtained 

o β̂~~
ttt Xvy +=  
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o )~)(ˆvar()~()~var()~var( ′−−+= tttttt XXXXvy β  

 
 
2.2.3.3 Logarithmic transformation 
 
Time series are often modelled in terms of the logarithms of their original data. As the logarithmic 
transformation is not additive, the distribution method exposed above can not be applied directly. 
We shall consider an approximated solution, which sum up to a small adaptation of the previous 
method (see Di Fonzo, 2003) and the Iterative method developped by Proietti (2004). The former 
will be our starting point for the latter. 
 
More formally, we consider in this paragraph that the state-space form is defined on the logarithmic 
transformation of the disaggregated series. 
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The aggregation constraint is now non linear. The different options implemented in the library are 
detailed below. 
 
 
2.2.3.3.1 Approximated solution 
 
By using the Taylor series expansion of   around the average of   during each aggregated 

period, it can be easily seen that 
tyln ty

 

∑≈− qt yqqYq lnlnln   

 
The logarithmic model can thus be approximated by the linear solution, if we properly transform the 
aggregated values. 
 
As suggested in Di Fonzo (2003), we shall restore the exact aggregation constraints by distributing 
the residuals with the Denton's method. 
 
 
2.2.3.3.2 Iterative solution 
 
Using a reasoning similar to the Proietti's one (2004), given a trial disaggregated series 

)~exp(~
tt zy = ,  the Taylor expansion of )exp( tt zy =  around tz~  yields: 
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Applying the cumulator operator, we get:  
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If we pose  
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the previous equation can be more concisely expressed as 
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The state-space form of the linear gaussian approximated model  (LGAM) conditional to tz~  is then 

formulated as follows: 
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Applying the KF and the disturbance smoother (see 4.4), a new estimate of the disaggregated 
series is computed. The process is iterated until convergence. As starting values, we take the 
solution of the approximated solution (without the final Denton correction) as defined in 2.2.3.3.1. 
The likelihood of the model is approximated by that of the LGAM at convergence.  
It should be noted that the iterative process doesn't necessarily converge. This is more often the 
case when the starting values are far from their optimum. If some parameters of the model have to 
be estimated by ML, a good solution seems to start the maximization procedure from the ML 
estimates of the approximated logarithmic model. Our implementation works in that way.  
 
 
2.2.4 PRACTICAL CONSIDERATIONS 
 
Aggregation leads to a substantial loss of information. In practice, only very parsimonious models 
can be estimated in a relatively stable way. Moreover, many SSF, for example those including 
seasonal unit roots, lead to degenerate aggregation models. Even if the library allows the use of 
complex SSF for the residuals, those simple observations justify why we shall restrict our 
applications, in many cases,  to a small subset of models, including the most traditional solutions. 
 
It should also be noted that, as far as ARIMA residuals are considered, models for distribution can 
be easily transformed to models for interpolation9: seeing that stocks are simply an accumulation of 
flux, we can move from one case to the other by accumulating the aggregated series and the 

                                                      
9 This is not true when we are dealing with log-transformed models. 
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related series (the starting values don't matter) and by adding a unit root to the model of the 
residuals. The versatility of the library allows the statistical treatment and comparison of both 
solutions. This is also a way to verify some results with other software (for instance TRAMO). 
 

3 OO-DESIGN 

The object-oriented paradigm offers well-known facilities to achieve extensibility. We shall show in 
the next paragraphs how they are exploited in our library leading to efficient and flexible 
implementations of  KF.   
 

3.1 STATE SPACE MODELS 

 
3.1.1 GENERAL CONSIDERATIONS 
 
While general forms of KF, based on matrix computation, can be quite easily developed, faster 
implementations must exploit the structure of the matrices involved in the KF. Those structures are 
specific to each kind of model. By exploiting them, we can achieve a substantial gain in 
performances. 
The OO-design of the library is based on those considerations. Common features, like the whole 
logic in the filtering, smoothing, likelihood evaluation, ... will be handled by general entities while the 
actual computation will be delegated to implementations of specific models. 
 
We shall clarify that point by an example. 
 
The filtering process involves several operations that multiply an array by the transformation matrix 

  (see 2.1.2, , tT ttttt fZPTK /′= ttttt vKaTa +=+1 ). 

 
Instead of using actual matrix computations, we shall impose on each specific SSF to provide a 
function that performs that multiplication ( ),( xtfxTy Txt == ). In many cases, that function will be 

simple and much faster than matrix computation.  
 
For example, in the case of an ARIMA model (see appendix 1 for its SSF), the operation 

is defined by ),( xtfy Tx=
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−−=−
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where the )(iφ  are the P coefficients of the autoregressive polynomial. 
 
It involves P (<=r) multiplications while the blind matrix computation needs 2r  multiplications and 
more memory traffic. 
 
A similar reasoning could be applied to other operations like, for example,  

(multiplication by the measurement matrix), or like 

),( xtfxZ Zxt =
),( xtfxT xTt =  (right-multiplication by the 

transition matrix, used in the smoothing process). 
 
Thus, besides the description of the different matrices listed in § 2.1.1,  the definition of a generic 
SSF (see appendix 2) also precise some "basic operations" for a faster processing. The common 
algorithms only call generic properties and methods; so they remain valid for any (new) 
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implementations of SSF. However, by using the "basic operations", they implicitely exploit the 
specific structure of each model. 
 
The skeleton of our OO-model on SSF is illustrated in the following paragraphs by simplified UML 
diagrams. 
 
3.1.2 MODELS HIERARCHY 
 
Any SSF is an implementation of the generic interface IModel. While some implementations are 
provided in the library (BasicStructuralModel, ArimaModel, UCArimaModel, ...), new ones can be 
added by the user, from scratch or by modifying existing solutions. For a "quick and dirty" 
development, the library also provides default implementations (DefaultModel, 
DefaultTimeInvariantModel); because they hardly exploit the structure of the model, the default 
implementations are significantly slower10. Finally, the ExtendedModel (2.1.4.1), defined for any 
SSF, is simply another kind of model 
 

MyModel DefaultModel

IModel
<<Interface>>

ArimaModel

UCArimaModel

BasicStructuralModel

DefaultTimeInvariantModel

MyTimeInvariantModel

MyModel

IModel
<<Interface>>

ExtendedModel

11

Model

Regressors
**

X

 
 
3.1.3 FILTERING AND SMOOTHING 
 
Filtering and (disturbance)smoothing are monitored by special entities. Those processes are 
defined for any SSF. Results are stored in independent objects for possible future uses. 
 

                                                      
10 In general, between two and three times slower than optimized implementations. 
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SmoothingResults

DisturbanceSmoother

IModel
<<Interface>>

Process

Smoother

Process

Filter

Process

BaseSmoother

FilteringResults

CalcSmoothedStates

 
3.1.4 ESTIMATION 
 
Estimation of any SSF is handled by the AugmentedModel (2.1.4.2) or by the ModelEstimation 
(2.1.3) entities depending on whether regressors are present or not. Likelihood, residuals, 
coefficients of the regression and other results are provided by those entities. 
 

IModel
<<Interface>>

IModelEstimation
Likelihood
Residuals
others...

<<Interface>>

11

Regressors

QRDecomposition

FilteringResults

ModelEstimation

11

AugmentedModel
Coefficients
CVariance

**

X

Uses

Filter
Uses

 
 
3.1.5 LIKELIHOOD MAXIMISATION 
 
An IModelEstimation can be viewed as a real function; its parameters are the hyperparameters of 
the underlying SSF. Any function minimizer can then be used to search the maximum likelihood 
estimates of those parameters. In most cases, the BFGS algorithm provided in the library, which is 
based on numerical derivatives, yields good results. 
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MyMinimizer

IParametriseable
<<Interface>>

Marquardt

IRealFunction
<<Interface>>

IFunctionMinimizer
<<Interface>>

Minimize

NumericalDerivatives

BFGS

Uses

IModel
<<Interface>>

IModelEstimation
<<Interface>>

11

 

3.2 BENCHMARKING 

 
Apart from some small details, our implementation of benchmarking is a straighforward application 
of the KF algorithms of § 2.1, with the different SSF defined in  § 2.2.  
The library provides three kinds of benchmarking models. The first one, GenericExpander,  is an 
exact translation of the model (3): it accepts residuals represented by any SSF,  provided that its 
measurement equation doesn't contain disturbances. ArimaExpander objects are entities 
specialized for the handling of benchmarking models with ARIMA residuals; the most popular 
solutions belong to that case. Finally, the LogArimaExpander class modifies the previous one to 
deal with the state-space form (5), used in the iterative approach of the log-transformed model. 

Result

IModel
<<Interface>> GenericExpander

IModel
<<Interface>>11

IModelEstimation
<<Interface>>

IArimaModel
<<Interface>>

TsRegressors

Ts

Ts

ArimaExpander

11

Ts

LogArimaExpander

TsArimaExpander

Estimation

ArimaModel

Regressors

Process

Uses

11

OnePeriodAheadResiduals

Uses

Model 2.2.3.1, with 
ARIMA errors

Model 2.2.3.3.2,
with ARIMA errors

Model 2.2.3.1
. General 

 
The high-level entity TsArimaExpander allows an easier treatment of the different solutions in the 
case of SSF with ARIMA residuals. It also provides many auxiliary results and hides most of the 
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details involved in a complete processing. It is also the cornerstone of the applications presented in 
§4. 

4 APPLICATIONS 

The basic idea behind our technological choice is to provide a reusable toolbox rather than a 
closed end product. As shown in appendix 3, OO languages lead to code that doesn't go stray too 
far from the theoretical reasoning; so they facilitate fast and understandable developments .  
However, to illustrate what can be done with the library, we provide two applications on 
benchmarking. The first one is a standard stand-alone application (NbbBenchmarking), with rich 
graphical possibilities, while the second one is an Excel add-in (Desaggregator.xls). Both allow the 
treatment of models that belong to the class defined in 2.2, when the residuals follow a simple 
ARIMA process. The possible specifications and the main results are detailed below11. More 
advanced documentation is available on the site. 
 
Available options (specifications) 
 
Arima model of the residuals 

• AR(1): Chow-Lin 
• RW1 (=ARIMA(0 1 0)): Denton(1), Fernandez 
• RWAR1 (=ARIMA(1 1 0)): Litterman 
• RW2 (=ARIMA(0 2 0)): Denton(2) 
• SAR1 (=SARIMA(1 0 0)(1 0 0)): for seasonal residuals 
• IMA(1, 1) (=reduced form of local level) 
• IMA(2, 2) (=reduced form of local linear trend) 

 
Aggregation type: 

• Sum (flux) 
• Average (flux) 
• Last (stock) 
• First (stock) 

 
Objective function 

• Likelihood 
• Sum of the square residuals 
• None (fixed parameter(s)) 

 
Regressors (see 2.1.4) 

• Fixed unknown 
• Diffuse 

 
Log Transformation  

• None 
• Approximated (2.2.3.3.1) 
• Exact (iterative, 2.2.3.3.2) 

 
Trend and constant : admissible choices: 
 
 Constant Trend 
AR1 V V 
RW  V 
RWAR1  V 
RW2   

                                                      
11 Features marked by an asterisk are only available in the stand-alone application. 
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SAR1 V V 
Local level  V 
Local linear trend   
 
Trend and constant are defined for the measurement equation only. 
 
Output 
 
disaggregated series an its variance 
 
Main Results 
 
• Used specifications 
• Estimated Arima model :(full) autoregressive and moving average polynomials 
• Model adequation (computed on the extended model) 

o Log likelihood (3.2.3) 
o Prediction error variance (computed at the last non missing observation) 
o Standard error (ML estimator) 
o AIC 
o BIC 

• Regressors 
o Estimates, SER and P-Value 
o Covariance matrix 

 
Residuals analysis 
 
The analysed residuals are the one-step-ahead forecast errors. They are computed by means of 
the extended KF (3.3.1) 
 
• Statistics 

o Distribution 
 Mean 
 Skewness 
 Kurtosis 
 Join test (Doornik-Hansen) 

o Independence 
 Durbin-Watson 
 Ljung-Box 

o Randomness 
 Runs around the mean (number and length) 
 Up and down runs (number and length) 

o Linearity 
 Ljung-Box on square residuals 

• Data* (graphical) 
• (Partial)autocorrelations* (graphical) 
• Periodogram* (graphical) 
• histogram of the distribution* (graphical) 
 
Likelihood* 

Profile likelihood function (maximised according to ). 3D view in the case of 2 
hyperparameters. 

2,σβ

 
Revisions history* 
 
The way the revision history is computed can be customized as follow: 
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• The hyperparameters can be fixed or not (in the former case, the parameters computed on the 

full period are kept, but the other quantities are re-estimated, while in the latter case, the full 
process is reexecuted on different time horizons). 

• The number of re-estimations (with a minimun of observations) involved in the study may be 
defined. 

 
The results are (if q is the number of high-frequency periods in one low-frequency period): 
 
• Errors 
 

we consider the absolute differences between the final estimated values (on the whole period) 
and the results obtained on shorter periods. The errors are computed on the last q periods of 
the estimation and on the first q forecasting periods. 
 

o mean of the errors 
o mean of the percentage errors 
o root mean square errors 

 
The other results come from the estimation of the SSF on shortened periods. 

 
• Regressors: coefficients of the regression, with their standard deviations 
• Estimates: interpolated series (with q forecasts) 
• Parameters 
 
 
 
Algorithms 
 
We summarize below the procedures used according to the kind of aggregation, the presence of a 
regression part in the model and the log transformation option. The links with the theoretical part of 
the paper are highlighted.  
 
 Sum/average 

(distribution of flux) 
Last/first observation 
(interpolation of stocks) 

No Log Normal estimation (2.1.3) of the 

cumulated model ( ). 
C
ty

Normal estimation (2.1.3) with 

 extended by missing values; ty
Appr. 
Log 

Normal estimation (2.1.3) of the 
corrected cumulated model 

(  or ). qqyq C
t

lnln − C
t
yln

No 
regressors 

Iterative
Log 

Iterative estimation of the Log model 
(4.3.3.2), using the normal likelihood 
estimation (3.2.3). 

Normal estimation (2.1.3) with 

ln( ) extended by missing 

values;  
ty

No Log Augmented/Extended model (2.1.4) 

on  and . See 2.2.3.2 also for 

details. 

C
ty

C
tX

Augmented/Extended model 

(2.1.4) with  extended by 

missing values;  
ty

 

Regressors 

Appr. 
Log 

Augmented/Extended model (2.1.4) of 
the corrected cumulated model 

(  or ), using 

. See also 2.2.3.2 for details. 

qqyq C
t lnln − C

tyln
C
tX

Augmented/Extended model 

(2.1.4) with ln( ) extended by 

missing values;  
ty
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 Iterative
Log 

Augmented/Extended model (2.1.4) of 
the LGAM (2.2.3.3.2, iterative 
solution). 
See also 2.2.3.2 for other details.  

 

 
Maximum likelihood estimates are computed through the BFGS procedure integrated in the library. 
They depend on the assumption made on the diffuse/non diffuse character of the regression 
effects. 
 

5 FUTURE EXTENSIONS 

It should be stressed that the solutions for benchmarking proposed in the present library are just 
simple applications of the whole underlying SSF framework. Starting from the current situation, 
other approaches could be quickly implemented (for example the model of Durbin and Quenneville, 
1997). However, the main challenge is now to enrich the framework for handling multivariate 
models; so, the scope of application will be enlarged to other appealing solutions like common 
components models. By using the univariate treatment of multivariate series as described in DK 
(2001, § 6.4), that could be done in a reasonable delay (2006).  
 
 

6 CONCLUDING REMARKS 

The libraries developed by the R&D cell of the statistical department of the National Bank of 
Belgium are an attempt to combine recent developments around the SSF and new technologies. 
They are still in a prototyping phase; so, their algorithms and their results should be handled with 
some caution. Updates of the software and of the documentation will be regularly made available 
on a WEB site of the Bank (http://www.nbb.be/app/dqrd/index.htm). 
 
Anyway, the present work already shows that the OO paradigm fits very well the versatility of the 
state-space models and that, through a good design, it is possible to achieve fast processing as 
well as flexibility. Reusability is also achieved by the use of standard technologies like Java and 
.NET. 
 
As far as benchmarking is concerned, state-space techniques provide a coherent framework for the 
traditional methods. Thanks to their high performances, they make feasible a variety of analysis 
devices.  
 
Finally, further improvements in the benchmarking domain should be obtained by means of a 
multivariate approach. 
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Appendix 1. State-space representation of an ARIMA model. 
 
The ARIMA process is defined by 
 

( ) ( ) ( ) ( ) )(tBtyBB εΘ=Γ∆ , 
where 
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are the differencing, auto-regressive and moving average polynomials. We also write: 
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Let  be the psi-weights of the Arima model,  and iψ ist ,ψ ist ,γ , the psi-weights and the 

autocovariances of the differenced Arma model. We also define: 
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Using those notations, the state-space model can be written as follows12: 
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where )( tity +  is the orthogonal projection of ( )ity +  on the subspace generated by 

. Thus, it is the forecast function with respect to the semi-infinite sample. { tssy ≤:)( }
 
System matrices: 
 
Using the notations of § 3.1, the matrices of the model are 
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12 See for example Gomez-Maravall (1994) 
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and the initial conditions can be written: 
 

( )

'

00

0,

0*,

0

ΛΛ=

Σ′Σ=
=

∞P
VP

a L

 

 
V  is the variance/covariance of the stationary model; it can be derived by the relationships: 
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Σ  is a r x r lower triangular matrix with ones on the main diagonal; other cells are defined by the 
recursive relationship: 
 

[ ] [ ] [ ]jdijiji d ,...,1, 1 −Σ−−−Σ−=Σ δδ   

 
with the convention [ ] 0, =Σ ji  if  0<i
 
Λ  is a r x d matrix; its first d rows form an identity matrix; other cells are defined as above: 
 

[ ] [ ] [ ]jdijiji d ,...,1, 1 −Λ−−−Λ−=Λ δδ   
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Appendix 2. Definition of the IModel interface (using the C# syntax)  
 
 
public interface IModel : IParametriseable  
{ 

// Observations of the model 
void SetY(double[] y); 
double Y(int t); 
 
 
// Information on the observations 
bool HasData{get;} 
// Number of available observations.  
int DataCount{get;} 
// Number of considered iterations. could be less than DataCount, if 
some observations are dropped or more than DataCount when forecasting 
is considered 
int EndPosition{get;set;} 
 
/////////////// 
// Matrices of the model at time t. See 3.1 for further explanations  
 
// Size of the state. Noted r in 3.1.  
int StateDim{get;}  
// utility of t 
bool IsTimeInvariant{get;} 
 
// Measurement matrix 
void Z(int t, double[]z); 
 
// Variance of the measurement disturbance term 
double H(int t); 
 
// Transition matrix 
void T(int t, Matrix tr); 
 
// Variance of the state disturbance terms  
void Q(int t, SymmetricMatrix q); 
void R(int t, int[] r); 
void W(int t, Matrix W); 
 
 
// Information on the matrices of the model 
bool HasMeasurementDisturbance{get;} 
bool HasR{get;} 
bool HasW{get;} 
 
// Length of R. Noted m in 3.1. 0<m<=r 
int ResCount{get;} 
// Size of Q. Noted e in 3.1. 0<e<=r 
int ResDim{get;}  
/////////////// 
 
// Initialisation 
 
// Initial state 
double[] A0{get;} 
// Variance of the initial non diffuse part 
SymmetricMatrix Pf0{get;} 
// Variance of the initial diffuse part 
SymmetricMatrix Pi0{get;} 
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// Number of independent non-stationary components. equals rank of 
Pi0. Noted d in 3.1 
int NonStationaryDim{get;} 
// d > 0 
bool IsDiffuse{get;}  
/////////////// 
 
// Others informations 
 
bool IsValid{get;} 
 
// L = T - K*Z, K column-vector 
void L(int t, double[] K, Matrix l); 
 
/////////////// 
// Atomic operations 
 
// Forwards operations 
 
// xout = T*xin, xin column-vector   
void TX(int t, double[] xin, double[] xout); 
 
// Z*xin, xin column-vector  
double ZX(int t, double[] xin); 
 
// xout = Z*M, M matrix 
void ZM(int t, AbstractMatrix M, double[] xout); 
 
// V = T*V*T', the most time-consuming operation. It should be 
carefully optimized. 
void TVT(int t, SymmetricMatrix V); 
 
// Z*V*Z' 
double ZVZ(int t, SymmetricMatrix V); 
 
 
// Backwards operations 
 
// xout = xin*T, xin row-vector    
void XT(int t, double[] xin, double[] xout); 
 
// V = V + Z'*d*Z 
void VpZdZ(int t, SymmetricMatrix V, double d); 
 
// X = X + Z * d, X row-vector 
void XpZd(int t, double[] X, double d); 

 
} 
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 Appendix 3. Examples of code (C# syntax). 
 
The goal of the following examples is just to give a fast overview of the capabilities of the library 
and of its conciseness. Real code needs of course much further documentation. 
 
/////////////////////////////////////////////////////////////////////// 
// Example 1. Computation of the likelihood of a Chow-Lin/Litterman model 
// following several ways. Quarterly series. Fixed parameter (-.9). 
/////////////////////////////////////////////////////////////////////// 
// Construction of an (RW)AR1 ARIMA model 
int freq=4; 
SArimaSpecification spec=new SArimaSpecification(freq); 
spec.P=1; 
// spec.D=1; // for litterman 
 
SArimaModel arima=new SArimaModel(spec); 
arima.Parameters=new double[]{-.9}; 
 
// double[] yc=... 
// double[][] x=..., xc=...   
// We suppose that yc, x, xc are respectively the aggregated series 
//(expanded with missing values), the related series and the cumulated  
// related series. 
 
// Contruction of a (Durbin-Koopman) SSF for the given ARIMA model  
// (see 2.1.1 and appendix 1) 
ArimaDKModel mSSF=new ArimaDKModel(arima); 
    
// Construction of an optimized benchmarking model for the given ARIMA  
// model (see 2.2.2) 
ArimaExpander mxSSF=new ArimaExpander(arima, freq); 
mxSSF.SetY(yc); 
 
// Augmented model (see 2.1.4.2) 
AugmentedModel agModel=new AugmentedModel(); 
agModel.Model= mxSSF; 
agModel.Regressors=xc; 
agModel.UseDiffuseRegressors(true); 
double agLL= agModel.LogLikelihood; 
 
// Extended model (see 2.1.4.1). Construction + Estimation 
ExtendedModel exSSF=new ExtendedModel(mxSSF, xc); 
ModelEstimation mEst=new ModelEstimation(); 
mEst.Model=exSSF; 
double exLL=mEst.LogLikelihood; 
 
// use of not optimized methods 
// Generic expansion (see 2.2.3.1) followed by Extended model 
GenericExpander gxSSF=new GenericExpander(mSSF,freq); 
ExtendedModel exg=new ExtendedModel(gxSSF, xc); 
exg.SetY(yc); 
mEst.Model=exg; 
double exgLL=mEst.LogLikelihood; 
 
// Extended model followed by Generic expansion    
ExtendedModel exm=new ExtendedModel(mSSF, x); 
GenericExpander gex=new GenericExpander(exm, freq); 
gex.SetY(yc); 
mEst.Model=gex; 
double gexLL=mEst.LogLikelihood; 
 
// It is to be noted that the previous two solutions imply quite  
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// different SSF. 
 
Following the length and the frequency of the series, the performances of the previous solutions 
differ sometimes substantially. The table below gives the number of function evaluations per 
second. (Context: C# implementation, Windows XP, 3 Ghz CPU, 512 MB RAM). 
 
 Chow-Lin Litterman 
 Quarterly series  

(15 years) 
Monthly series 
(15 years) 

Quarterly series  
(15 years) 

Monthly series  
(15 years) 

Augmented model 4500 2050 3600 1750 
Extended model 5600 2100 3400 1550 
Generic expansion + 
extended model 

3900 1450 2100 1000 

Extended model + 
generic expansion 

3300 1150 1900 600 

 
/////////////////////////////////////////////////////////////////////// 
// Example 2. Benchmarking for a local linear trend. No regressors.  
// Estimation and smoothing. 
/////////////////////////////////////////////////////////////////////// 
 
// Construction of the basic structural model 
BSMSpecification bspec=new BSMSpecification(); 
bspec.HasSeas=false; 
bspec.HasSlope=true; 
BasicStructuralModel bsmSSF=new BasicStructuralModel(bspec, null, freq); 
bsmSSF.IsNoiseInState=true; 
 
// Generic expander. 
GenericExpander bsmxSSF=new GenericExpander(bsmSSF,freq); 
bsmxSSF.SetY(yc); 
 
// Likelihood function (see 2.1.3) 
ModelEstimation bsmEst=new ModelEstimation(); 
bsmEst.Model=bsmxSSF; 
 
// Optimization through BFGS. BFGS needs an auxiliary object to check the 
// validity of the parameters 
BFGS bfgs=new BFGS(); 
BSMChecker checker=new BSMChecker(); 
checker.UseParamsTransformation=false; 
 
if (bfgs.Minimize(bsmEst, checker)){ 
 bsmEst=(ModelEstimation) bfgs.Result; 
 bsmxSSF=(GenericExpander)bsmEst.Model; 
} 
 
// Smoothing of the generic expander 
SmoothingResults srslts=new SmoothingResults(); 
Smoother smoother=new Smoother(); 
smoother.Process(bsmxSSF, srslts); 
// the results can be further used. For example, the following code  
// yields the smoothed series (ys). 
double[] zorig=new double[bsmxSSF.StateDim]; 
double[] ys=new double[yc.Length]; 
for (int i=0; i<ys.Length; ++i){ 
 bsmxSSF.ZOriginal(i, zorig); 
 ys[i]=srslts.ZComponent(zorig); 
} 
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