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Letter from the editors 
 

 

 

One of the objectives of the Research in Official Statistics (ROS) journal is to 

illustrate how official statistics can benefit from research and, through this, 

promote the use of scientific methods in an area which still has a mainly 

administrative component. 

 

An opportunity for this is afforded by this issue of the journal which is mostly 

devoted to Bayesian statistics and its applications in official statistics. The issue is 

composed of specially selected papers, fulfilling these criteria, contributed and 

presented at the sixth world meeting of the International Society for Bayesian 

Analysis. The selection was carried out by a panel from the 234 papers which were 

presented at the meeting. 

 

Authors of the selected papers were invited to present a more developed version of 

their papers for the journal. The selected papers were supplemented by two 

additional ones on the topic of disclosure limitation, because of its special interest 

to the readers of this journal. All the solicited contributions were then fully 

reviewed following the standard ROS review process. 

 

The applications presented in this issue cover a broad variety of topics: record 

linkage, disclosure-risk control and data analysis, to mention just a few.  These are 

all key preoccupations of official statisticians. 

 

The editors would like to thank Professor Stephen E. Fienberg of Carnegie Mellon 

University and Professor Edward I. George of the University of Texas for their 

special coordination role in the selection and reviewing process for this issue. We 

thank you all for your continued interest and support. 

 

 

 

Photis Nanopoulos       Daniel Defays 
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A decision-theoretic approach to data disclosure problems 
 

Mario Trottini  

 

Universitat de Valencia, Spain, and Carnegie Mellon University, United States 

 

Keywords: disclosure limitation, information loss, decision theory, Bayesian theory 

 

Abstract 

 

This paper presents a decision-theoretic approach to data disclosure problems. The approach is 

innovative because (i) it offers a theoretical framework to develop optimality criteria for the choice of 

the best form of data release, (ii) it recognises the different perspectives of the statistical agency and of 

the users of the data in assessing the extent of disclosure and the quality of the users’ inference 

associated with different forms of data release. This leads to new measures of disclosure risk and data 

utility that take into account not only what the users believe they have learned from the data, but also to 

what extent their inferences are correct. 

 

 

1.  Introduction 
 

As a part of their activities, most statistical agencies release data sets containing information 

on individual entities subject to pledges of confidentiality. Nowadays confidentiality is a major 

legal concern for all statistical agencies as a consequence of the laws governing privacy and 

confidentiality of statistical data in individual countries and states. In the last 10 years, the 

amount of statistical data collected has increased enormously and new statistical algorithms 

and expanding power of computers have increased the danger of disclosure of confidential 

information. On the other hand, statistical information has become a key element for the 

actions that both private and public decision-makers have to take, with a corresponding 

increase in the demand for release of statistical data. Government agencies use statistical data 

to decide on the allocation of funds and to monitor social programmes, policy analysts use 

statistical data to inform social decisions, researchers use statistical data to test their theories 

and to achieve a deeper understanding of the phenomena under study. Ideally a statistical 

agency should provide maximum information to the users preserving the privacy of the 

individual entities represented in the data set. The subfield of statistics concerned with such a 

problem is usually referred to as statistical data protection, statistical confidentiality or 

statistical disclosure limitation. 

 

In this paper, we present a decision-theoretic approach to data disclosure problems. In our 

disclosure scenario it is assumed that the set of users can be partitioned in two groups. Those 

who want to use the released data to perform statistical studies or for research purposes, and 

those who want to use the released data to disclose confidential information about the data 

providers. We refer to the first group as society and to the second group as the intruder. More 
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formally, we assume that society is interested in an unknown quantity 
SOC

Θ  while the intruder 

is interested in an unknown quantity 
INT

Θ  and they try to infer their target values based on the 

information contained in the released data. We assume the availability of a specified set of 

alternative forms of data release and the agency must decide which is best to release, taking 

into account the extent of disclosure and the data utility associated with each form of data 

release. The extent of disclosure measures the extent to which the intruder’s inference about 

INT
Θ , based on the released data, can harm the data providers and/or the statistical agency. 

This is balanced by the data utility that measures the extent to which the released data is useful 

to society. We suggest choosing as the optimal form of data release the one that maximises the 

data utility among those releases whose extent of disclosure falls below a fixed threshold. 

 

Our measures of the extent of disclosure and data utility are generalisations of measures 

proposed by Lambert (1993) for re-identification problems. The underlying idea is that in 

assessing the extent of disclosure and the data utility, we need to take into account not only 

what the users believe they learn from the released data but also what they actually learn. Most 

current measures take into account only the first component (see for example, Duncan and 

Lambert (1986), Duncan and Pearson (1991), Fienberg et al. (1997)). In this paper we argue 

that it is difficult to measure harm (and thus disclosure) and the usefulness of data if we ignore 

the correctness of the users’ inferences, since correct and incorrect inferences may have 

different consequences. 

 

Sections 2 and 3 contain a brief literature review of the measures of disclosure and data utility 

currently used in statistical confidentiality. In particular, in Section 2 we review in some detail 

the works of Duncan and Lambert (1986) and Lambert (1993) that inspired the main ideas of 

this work. Section 4 addresses the problem of the role of the statistical agency in assessing the 

disclosure risk and data utility. Section 5 sets up the basic assumptions and notation. Sections 

6 and 7 introduce new definitions of disclosure risk and data utility and describe a general 

framework for the representation of the trade-off of gains versus risk. Section 8 presents an 

optimality criterion for the choice of the best form of data release, and Section 9 contains 

concluding remarks. 

 

 

2.  Current measures of the extent of disclosure 
 

Most of the approaches currently used in statistical confidentiality to measure the extent of 

disclosure equate disclosure with what the intruder believes has been disclosed. The work of 

Duncan and Lambert (1986) provides a unifying framework for such methods. The approach is 

as simple as it is powerful. It assumes that the intruder prior beliefs about 
INT

Θ  before and 

after the release of the data can be expressed in terms of probability distributions that the 

authors refers to as prior and posterior (intruder’s) predictive distributions respectively. 

Different measures of disclosure are obtained by applying an uncertainty function to the prior 
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and posterior distributions of the intruder. An uncertainty function is a non-negative 

measurable mapping from the space of all possible distributions to the set of non-negative real 

numbers. Each distribution is associated with a non-negative number. The larger the number 

the more the uncertainty about the value of the random variable with that distribution. In 

particular if )( I

INT
L

Θ
 is the loss function for the intruder’s decision problem ‘identify 

INT
Θ ’, the 

uncertainty function is defined as the risk associated with the optimal estimate of 
INT

Θ  with 

respect to )( I

INT
L

Θ
. Denote by )( Ip  the probability distribution function that formalises the 

intruder’s beliefs about 
INT

Θ . The intruder’s uncertainty about the true value of 
INT

Θ  is then 

given by: 

∫ ΘΘ
= INTINTIINT

I

a

I
I dpaLpU

INTINT
ϑϑϑ )(),(argmin)( )(

)(
)(

)(  

Based on the idea that the larger is the intruder’s uncertainty after the release of the data, the 

smaller is the risk of disclosure, the different measures of disclosures are defined as decreasing 

functions of )( I

INT
U

Θ
(posterior). The disclosure rule is then to release the data if and only if 

)( I

INT
U

Θ
(posterior) is bigger than a fixed threshold. 

 

Duncan and Lambert (1986) show that different measures of the extent of disclosure currently 

used by statistical agencies can be obtained as special cases of this general framework for 

suitable choices of the loss function )( I

INT
L

Θ
. For example, suppose that the released data consists 

of a cross-classification with k categories. Assume that the intruder’s target is to disclose to 

which of the k categories a particular respondent, say A, belongs and that the intruder’s loss, 

when he incorrectly specifies that A belongs to category i, is a decreasing function of the 

posterior probability that A belong to that category. Duncan and Lambert’s disclosure rule, for 

this case, provides a basis for the ad-hoc rules for bounding tabular relative frequencies away 

from zero and away from one, discussed by the Subcommittee on Disclosure Avoidance 

Techniques (1978) and currently used by many statistical agencies. The defining feature of 

Duncan and Lambert’s approach is that the extent of disclosure only depends on the intruder’s 

uncertainty. Disclosure takes place if the released data make the intruder confident about his 

inference but the method makes no distinction between correct and incorrect inferences. The 

underlying idea is that correct disclosure and incorrect disclosure are both dangerous and 

should be avoided. 

Lambert (1993) argues that it is difficult to measure harm taking into account only the 

intruder’s uncertainty since the consequences of correct and incorrect disclosure are usually 

different. In particular for re-identification problems, Lambert distinguishes between the risk 

of perceived identification (the maximum of the intruder’s probability that one of the released 

records in the source file is the target’s) which represents what the intruder believes has been 

disclosed, and the risk of true identification (the percentage of records correctly identified by 

the intruder) which represents what the intruder actually has disclosed. This more general 

definition of disclosure recognises the complexity and the variety of ways in which disclosure 

can occur. If an agency’s goal is to prevent only correct inferences then the risk of true 

identification is the appropriate measure of disclosure. If, instead, the agency only wants to 
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prevent an intruder from believing that he has disclosed confidential information then it should 

use the risk of perceived identification. Finally if it wishes to prevent both correct inferences 

and intruder’s perceived disclosure, it should take into account both the risk of true 

identification and the risk of perceived identification. Lambert’s approach is flexible enough to 

provide a suitable measure of disclosure for all of these situations. Unfortunately the approach 

is problem specific and applies only to re-identification problems. The measure of global risk 

that we present in Section 6 generalises this approach and provides a general framework to 

measure the extent of disclosure for an arbitrary disclosure limitation problem. 

 

 

3.  Current measures of data utility and trade-off of gain versus 
risk 
 

Considerable research has been devoted to the assessment of the extent of disclosure, but little 

has been done to measure the impact of statistical disclosure techniques on statistical analyses. 

Most approaches proposed to date have been problem specific and do not provide a general 

framework to measure data utility (e.g., see Mateo-Sanz and Domingo-Ferrer (1999), Baeyens 

and Defays (1999), de Waal and Willenborg (1998) and Hurkens and Tiourine (1998)). 

Willenborg and de Waal (2001) and Trottini (2001) represent efforts to build such a 

framework. Willenborg and de Waal’s measure of data utility compares the entropy of the 

original data with the entropy of the released data. The method is very general and simple to 

implement; however, it ignores the final use of the data and it doesn’t describe the society’s 

behaviour when data are released. On the other hand, the measures of data utility in Trottini 

(2001) depend only on society’s posterior uncertainty about the true value of its target but do 

not take into account how accurate is society’s inference. The lack of suitable methods to 

measure the data utility has resulted in a lack of criteria to compare alternative forms of data 

release that are able to take into account the trade-off between disclosure risk and data utility. 

 

Duncan and Keller-McNulty (2001) suggest using the uncertainty measures proposed in 

Duncan and Lambert (1986) for the extent of disclosure and the MSE of the estimator of 

society’s target for data utility. The optimal form of data release then maximises the data 

utility among those possible releases whose extent of disclosure falls below a fixed threshold. 

Their work emphasises the trade-off of gain versus risk rather than the development of an 

appropriate measure of data utility. Trottini (2001) modifies this approach by using the 

measures of disclosure discussed in Duncan and Lambert (1986) for data utility instead of 

MSE. But in neither approach does the optimality criteria distinguish between correct and 

incorrect users’ (intruder’s and society’s) inferences. In Sections 7 and 8, we present measures 

of data utility and an optimality criterion that allow for this distinction. 
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4.  Correct and incorrect inferences: The role of the statistical 
agency 
 

In the literature on disclosure limitation, the role of the statistical agency in assessing the risk 

of disclosure and the data utility has undergone very little exploration. Most authors presume 

that the agency only tries to reproduce what would be the intruder’s and the society’s 

behaviour when the data are released (see for example Duncan and Lambert (1986)). In the 

few cases in which the agency plays a role in the assessment of the risk of disclosure or data 

utility (as in the re-identification problem), this role is not explicitly recognised and as a 

consequence it is not formalised. We believe that the agency’s perspective should be also a 

component of a disclosure limitation problem since it allows distinguishing between correct 

and incorrect inferences of the data users (intruder and society). Consider the following 

example. 

 

Example 1. Suppose that two data sets 
1
D  and 

2
D  are considered for release. Suppose that the 

intruder’s posterior distributions for 
INT

Θ  given 
1
D  and 

2
D  are N(-5,1) and N(5,1) respectively 

while the society’s posterior distributions for 
SOC

Θ  given 
1
D  and 

2
D  are N(-7,2) and N(7,2) 

(here N(m, v) denotes a normal distribution with mean m and variance v). Suppose also that the 

agency’s posterior distributions for 
INT

Θ  and 
SOC

Θ  given the original data are N(4.9,0.001) and 

N(-6.9,0.001) respectively and that intruder, society and agency use a quadratic loss function. 
Under quadratic error loss, the optimal action is the posterior mean and the uncertainty (i.e. the 

expected loss associated with the optimal action) is the posterior variance. Thus the intruder’s 

optimal estimates of 
INT

Θ  when 
1
D  and 

2
D  are released are -5 and 5, respectively, while the 

intruder’s uncertainty in both cases is 1. Similarly, society’s optimal estimates of 
SOC

Θ  when 

1
D  and 

2
D  are released are -7 and 7, respectively, and society’s uncertainty in both cases is 2. 

Based on the measures of disclosure in Duncan and Lambert (1986) as adapted by Trottini 

(2001), the agency should flip a coin to decide which data set is best to release, since in either 

case the intruder’s uncertainty is 1 and the society’s uncertainty is 2, and 
1
D  and 

2
D  are 

perfectly equivalent. However the agency posterior distribution for 
INT

Θ  and 
SOC

Θ  are 

N(4.9,0.001) and N(-6.9,0.001). 
 

In this example, the agency is very confident that the true value of 
INT

Θ is approximately 4.9 

(the 95 % posterior credibility interval for 
INT

Θ  is [4.84,4.96]) and the true value of 
SOC

Θ  is -

6.9 (the 95 % posterior credibility interval for 
SOC

Θ  is [-6.96, -6.84]). If 
2
D  is released the 

intruder’s optimal estimate of 
INT

Θ  is 5. This is very close to what the agency’s believes to be 

the true value of 
INT

Θ  while the society’s optimal estimate of 
SOC

Θ , 7, is very poor from the 

agency’s point of view. If 
1
D  is released, instead, the intruder’s optimal estimate of 

INT
Θ , -5, is 

very inaccurate from the agency’ s point of view while the society’s optimal estimate of 
SOC

Θ , 



M. Trottini  A decision-theoretic approach to data disclosure problems 

-7, is very close to what the agency believes to be the true value of 
SOC

Θ . Thus if we take into 

account not only the intruder’s and society’s perspectives, but also the agency’s knowledge of 

the intruder’s and the society’s targets 
INT

Θ  and 
SOC

Θ , the two forms of data release, 
1
D  and 

2
D , are no longer equivalent and 

1
D  should be intuitively released. 

 

In Sections 6 and 7 we present new measures of disclosure and data utility that formalise the 

role of the agency in assessing disclosure risk and data utility. In Section 8, based on these new 

measures of disclosure and data utility, we return to this example, and show that, in accord 

with intuition, the release of 
1
D  should be preferred to the release of 

2
D . But first, in the next 

section we introduce some basic notation and assumptions that characterise the new measures. 

 

 

5.  Notations and general assumptions 
 

As a result of its activities, a statistical agency produces a data set 
0
D . In order to reduce the 

risk of disclosure of confidential information, the agency modifies the original data using 

different disclosure limitation techniques (a review of alternative disclosure limitation 

techniques can be found in Willenborg and de Waal (2001)). These produce a class D of 

alternative forms of data release. We denote by 
R
D  the generic element in D. The goal of the 

agency is to choose the best form of data release in D. The definition of an optimality criterion 

requires some assumptions about the behaviour of the intruder, society, and statistical 

agencies, how they formalise their prior information about the target values, how they update 

this prior information, and how they use the released data. 

 

To make the problem meaningful, we assume that both 
INT

Θ  and 
SOC

Θ  are somehow related to 

the original data 0D . In particular, we assume that, prior to observing 0D , the statistical agency 

believes that 0D  is a realisation of a random variable 
A

V  whose distribution 
A
P  belongs to a 

parametric family PA with parameter 
A

Ψ  and parameter space 
A

Ω . The intruder and society, 

prior to observing 
0
D , believe that 

0
D  is a realization of random variables 

INT
V  and 

SOC
V  

whose distributions 
INT
P  and 

SOC
P  belong to parametric families PINT  and PSOC  with 

parameters 
INT

Ψ  and 
SOC

Ψ  and parameter spaces 
INT

Ω and 
SOC

Ω  respectively. The conditional 

distributions of 
A
V , 

INT
V , and 

SOC
V  given 

INT
Θ , and the conditional distributions of 

A
V , 

INT
V , 

and 
SOC
V  given 

SOC
Θ , formalize how the data 

0
D  are related to the intruder's and society's 

targets, 
INT

Θ  and 
SOC

Θ . We also assume that the intruder's and society's prior beliefs about 

INT
Ψ , 

INT
Θ , and 

SOC
Ψ , 

SOC
Θ , can be adequately expressed by probability distributions, 

INTΨ
π ( • ), 

)( I

INTΘ
π ( • ), 

SOCΨ
π ( • ), )(S

SOCΘ
π ( • ), that we refer to as intruder's and society's prior distributions for 

INT
Ψ , 

INT
Θ , and 

SOC
Ψ , 

SOC
Θ  respectively. Similarly we assume that the agency's prior beliefs 

12 
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about 
A

Ψ , 
INT

Θ , and 
SOC

Θ  can be adequately expressed by probability distributions, 
AΨ

π ( • ), 
)( A

INTΘ
π ( • ), )(A

SOCΘ
π ( • ) that we refer to as agency's prior distributions for 

A
Ψ , 

INT
Θ , and 

SOC
Θ  

respectively. The conditional distribution of 
INT
V  given 

INT
Ψ , and 

SOC
V  given

SOC
Ψ , the prior 

distributions for 
INT

Ψ  and 
SOC

Ψ , and the particular disclosure limitation technique used induce, 

for each form of data release, 
R
D , conditional distributions of 

R
D  given 

INT
Θ  and 

R
D  given 

SOC
Θ  that formalize how the released data set 

R
D  is related to the intruder's and society's 

targets 
INT

Θ  and 
SOC

Θ . We denote by )( I

INTΘ
π ( • |

R
D ) the conditional distribution of 

INT
Θ  given

R
D  

and by )(S

SOCΘ
π ( • |

R
D ) the conditional distribution of 

SOC
Θ  given 

R
D . These are the intruder's and 

society's posterior distributions for 
INT

Θ  and 
SOC

Θ  given 
R
D  and they express the intruder’s 

and society's beliefs about their targets, after the data 
R
D  have been released. Similarly, we 

denote by )( A

INTΘ
π ( • |

0
D ) and )( A

SOCΘ
π ( • |

0
D ) the conditional distributions of 

INT
Θ  and 

SOC
Θ  given 

0
D . These are the agency’s posterior distributions for 

INT
Θ  and 

SOC
Θ  given 

0
D  and they 

express the agency’s beliefs about the target values 
INT

Θ  and 
SOC

Θ , after the data 
0
D  have 

been observed. Note that the intruder’s and society’s posterior distributions are usually 

different from the agency’s posterior distributions. This is not just because the agency’s priors 

for 
INT

Θ  and 
SOC

Θ  might differ from the intruder’s and society’s priors, or because the 

agency’s model might differ from the intruder’s and society’s models, but also because the 

statistical agency possesses the original data 
0
D . Therefore the agency updates its beliefs about 

INT
Θ  and 

SOC
Θ  using the original data 

0
D  instead of the released data 

R
D . 

 

We also assume the following: 

 

Assumption 1: The statistical agency knows the intruder’s and society’s loss functions, their 

prior distributions for the targets values 
INT

Θ , 
SOC

Θ  as well as their uncertainties about the 

model generating the original data 
0
D . 

 

Assumption 1 is not necessarily realistic; however, we can easily relax it to fit more realistic 

scenarios. The statistical office can use classes of prior distributions and classes of loss 

functions to describe the intruder’s and society’s prior uncertainties about their targets, and the 

loss that the intruder and society are willing to pay for a generic estimate of their target values. 

Similarly, we can use classes of distributions to describe the intruder’s and society’s 

uncertainties about the mechanism producing the data 
0
D . 

Assumption 2: The statistical office releases complete information about the mechanism that 

produces the released data set. 

Many statistical agencies do not release complete information about the disclosure limitation 

techniques they use, e.g., the parameter values in the concentration rule for cell suppression 

(see Duncan et al., 1993). Our position is that statistical data are a public good (see Fienberg, 

2000), and thus the statistical agency should release as much information as possible about the 

13 
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mechanism generating the released data set. The more information that is available the easier it 

is for an observer to predict the behaviour of the intruder and society and therefore to make 

correct inferences about the disclosure risk and the data utility associated with the released 

data. 

Assumption 3: Both the intruder and society act rationally, according to the expected loss 

principle, i.e. in estimating their targets they try to minimise the posterior risk. 

The approach we propose is normative. We describe what the intruder and society should do 

rather than what they actually do in practice. From the statistical agency’s point of view, a 

descriptive approach might seem more appropriate. A descriptive approach is much more 

difficult to implement, however, and when assumption 2 is satisfied there should not be a big 

difference between the two approaches. 

Assumption 4: The probability that the intruder takes actions is a decreasing function of the 

intruder’s uncertainty. 

Assumption 4 implicitly assumes that the intruder has to pay a penalty when he claims that 

confidential information has been disclosed, but actually no disclosure has taken place. This 

assumption is realistic in many problems (e.g., when legal systems allow for redress of harm 

resulting in the misuse of public information), although not in general. 

 

 

6.  Representing disclosure risk 
 

The choice of the best form of data release requires a notion of disclosure risk and data utility. 

In a broad sense the disclosure risk associated with the release of a data set 
R
D  is a measure of 

the extent to which the release of 
R
D  makes it possible for the intruder to create harm. For 

example, the intruder’s goal could be to obtain information about particular individuals, to 

discredit the agency, or simply to show his own cleverness. It seems reasonable for the 

statistical agency to act ‘as if’ all these goals actually co-exist. As a result we make the 

following assumption: 

Assumption 5: The intruder can create harm in two different ways: 

1. disclosure harm: the intruder discloses confidential information about the providers of the 

data, i.e. the intruder’s inference is correct; 

2. discredit harm: the intruder discredits the statistical agency or the data providers, claiming 

that confidential information has been disclosed. 

The notions of disclosure harm and discredit harm generalise the definitions of risk of true 

identification and risk of perceived identification introduced by Lambert (1993) for re-

identification problems. Disclosure harm takes place when the intruder’s inference about 
INT

Θ  

is correct, (for example when the intruder correctly identifies a respondent whose record is in a 

released microdata set, or gives a very good approximation of the value of a sensitive attribute 

of a respondent). In the re-identification context considered by Lambert, the agency knows the 

true value of the intruder’s target and therefore it makes sense to talk of true and false 

disclosure (since the intruder is either right or wrong). In a more general setting, the agency 
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can only estimate the true value of the intruder’s target, and the extent to which the intruder’s 

inference is correct does not depend only on his inference but also on the agency’s inference 

about 
INT

Θ . Discredit harm is, instead, a measure of how confident the intruder is about his 

inference and can occur even when the intruder’s inference is completely incorrect but the 

intruder believes that his inferences are precise and acts accordingly. The two types of harm 

can occur in different ways and we need to distinguish among them. We introduce the 

following definitions: 

 

Definition 1: Let )( I

INT
U

Θ
( )( Ip ) denote the intruder’s uncertainty about 

INT
Θ  when his distribution 

over 
INT

Θ  is )( Ip ( • ). We define the risk of discredit harm (RDH) when the intruder’s 

distribution over 
INT

Θ  is )( Ip ( • ) as: 

 

  RDH (
)(I

p )= - 
)(I

INT

U
Θ

(
)(I

p ) (2) 

 

Definition 1 rephrases and specialises assumption 4. The risk of discredit harm is a decreasing 

function of the intruder’s posterior uncertainty about 
INT

Θ . Here we use the function ‘minus 

the uncertainty’, but other choices, of course, are possible. RDH is minus the (intruder’s) 

posterior knowledge measure of disclosure proposed by Duncan and Lambert (1986) and thus 

cannot be positive. RDH  = 0 if and only if the intruder’s has no uncertainty about the true 

value of the target 
INT

Θ . 

Definition 2: Let 
A

G and 
INT

G  be two probability distributions, and let D(
A

G ,
INT

G ) be a 

measure of divergence between 
A

G  and 
INT

G . D(
A

G ,
INT

G ) is a measure of how well 
INT

G  

approximates 
A

G . Also let )( A

INT
U

Θ
( )(Ap ) be the agency’s uncertainty about 

INT
Θ  when its 

distribution over 
INT

Θ  is )(Ap ( • ). We define the intruder’s estimated knowledge (IEK) from 

the agency’s point of view when the intruder’s distribution over 
INT

Θ  is )( Ip ( • ) as: 

 

 IEK (
)(I

p )= -[D (
)(A

INT
Θ

π ( • | 0D ), 
)(I

p ) + 
)(A

INT

U
Θ

(
)(A

INT
Θ

π ( • | 0D ))]  (3) 

 

In particular we define the intruder’s prior estimated knowledge, IEK ( )( I

INTΘ
π ( • )), and the 

intruder’s posterior estimated knowledge, IEK ( )( I

INTΘ
π ( • |

R
D )). 

Definition 2, says that, from the agency’s point of view, the intruder’s knowledge about 
INT

Θ  

when his distribution over 
INT

Θ  is )( Ip , is extensive (i.e. the risk of disclosure harm is high) 

only if the agency’s uncertainty about 
INT

Θ  based on the original data 
0
D  is very small and the 

intruder’s distribution over 
INT

Θ , )( Ip , does not differ too much from the agency’s posterior 

distribution based on the original data, 
0
D .  
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Note that 

 

  IEK≤ - )( A

INT
U

Θ
( )( A

INTΘ
π ( • |

0
D ))≤ 0   (4) 

 

and IEK  = 0 if and only if the agency’s has no uncertainty about the true value of the target 

INT
Θ  and the agency’s and intruder’s distributions over 

INT
Θ  are the same, as measured by the 

divergence D( • , • ). 

A reasonable measure of disclosure associated with the release of a data set 
R
D  should take 

into account both the risk of disclosure harm and the risk of discredit harm. We propose the 

following definition of global risk. 

Definition 3: We define the global risk associated with the release of a data set 
R
D  as the 

vector: 

 

 G.RISK (
R
D )= [IEK (

)(I

INT
Θ

π ( • |
R
D )), RDH (

)(I

INT
Θ

π ( • |
R
D ))]  (5) 

 

Using definition 3, we can represent the risk associated with a form of data release 
R
D  as a 

point p (
R
D ) in a Cartesian plane, with coordinates G.RISK(

R
D ), as shown in Figure 1 – 

where 
INT
t  and 

A
t  denote threshold values for the maximum tolerable risk of discredit harm 

and intruder’s estimated knowledge respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

We assume that, prior to the release of the data, both the risk of discredit harm and the 

intruder’s estimated knowledge are below the corresponding thresholds. Then points in A 

correspond to data sets for which the intruder’s inference is imprecise from the agency’s point 

of view, however, the intruder is confident about his inference. In this case, from the agency’s 

point of view there is no violation of confidentiality but the intruder is likely to take some 

actions and act ‘as if’ confidentiality has been violated. Thus we have discredit harm but not 

disclosure harm. Points in B correspond to data sets for which the intruder’s inference is very 

precise both from the agency’s and intruder’s points of view. In this case, from the agency’s 

A B 

D C 

Risk of 

discredit 

harm 

Intruder’s estimated

knowledge (IEK) 

INT
t

A
t

(0,0

Figure 1: Global risk 
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point of view the intruder is very likely to correctly identify confidential information and act 

upon it. We have both disclosure harm and discredit harm. Points in C correspond to data sets 

for which the intruder’s inference is correct (from the statistical office point of view), but the 

intruder is not very likely to take any action since his uncertainty about the target value is very 

high. Thus we have disclosure harm but not discredit harm. Finally, points in D correspond to 

data sets for which there is no violation of confidentiality and the intruder is not likely to take 

any action, since his uncertainty about the true value of his target is very high. Data sets 

corresponding to points in D are the safest; those corresponding to points in B are the most 

dangerous. In particular the point (0,0) in Figure 1, corresponds to a data set whose release 

allows the intruder to disclose the true value of his target with probability one. 

 

Note that, as in Lambert (1993), correct and incorrect inferences can be distinguished if 

desired but they need not be. An appropriate choice of the threshold values, 
INT
t  and 

A
t , in 

principle allows the agency to prevent only correct inference (i.e. disclosure harm), or only 

discredit harm or both. In particular, if the goal is only to prevent the correct inferences, then 

INT
t  should be set equal to zero and 

A
t  set at an appropriate value strictly less than zero (the 

smaller 
A
t  the bigger the protection from disclosure harm). If, instead, the goal is only to 

prevent the intruder from believing that he has disclosed confidential information, then 
A
t  

should be set equal to zero and 
INT
t  set at an appropriate value strictly less than zero (the 

smaller 
INT
t  the bigger the protection from discredit harm). 

 

 

7.  Representing the data utility 
 

The measure of global risk, described in the previous section, has a natural extension as a 

measure of data utility. In a broad sense the data utility associated with the release of a data set 

R
D  is a measure of the extent to which the release of 

R
D  makes it possible for society to make 

accurate inferences about its target 
SOC

Θ . As for the extent of disclosure, we need to 

distinguish between the agency and the users’ perspectives; between correct and incorrect 

(society’s) inferences. We introduce the following definitions. 

Definition 6: Let )(S

SOC
U

Θ
( )(S
p ) be society’s uncertainty about 

SOC
Θ  when its distribution over 

SOC
Θ  is )(Sp ( • ). We define the perceived data utility (PDU) of a data user as society’s 

posterior knowledge (c.f., Trottini, 2001): 

 

 PDU (
)(S

p )= - 
)(S

SOC

U
Θ

(
)(S

p )  (6) 

 

Note that PDU≤ 0 and PDU=0 if and only if society has no uncertainty about the true value of 

the target, 
SOC

Θ . 
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Definition 7: Let D( • , • ) be a measure of divergence, as in definition 2. Also let )( A

SOC
U

Θ
( )( A
p ) be 

the agency’s uncertainty about 
SOC

Θ  when its distribution over 
SOC

Θ  is )(Ap ( • ). We define the 

society’s estimated knowledge (SEK) from the agency’s perspective, when society’s 

distribution over 
SOC

Θ  is )(Sp ( • ), as: 

 

   SEK(
)(S

p )= -[D (
)(A

SOC
Θ

π ( • 0D ), 
)(S

p ) + 
)(A

SOC

U
Θ

(
)(A

SOC
Θ

π ( • | 0D ))]              (7) 

 

In particular we use expression (7) for society’s prior estimated knowledge, SEK( )(S

SOCΘ
π ( • )), and 

society’s posterior estimated knowledge, SEK( )(S

SOCΘ
π ( • |

R
D )). Note that SEK≤ -

)( A

SOC
U

Θ
( )( A

SOCΘ
π ( • |

0
D )) and SEK=0 if and only if the agency has no uncertainty about the true value 

of 
SOC

Θ  and the agency’s and society’s distributions over 
SOC

Θ  are the same, as measured by 

the divergence D( • , • ). 

Perceived data utility (similar to the risk of discredit harm) measures how confident society is 

about its inferences. Society’s estimated knowledge (similar to the intruder’s estimated 

knowledge) measures how good society’s inference is from the agency’s perspective. A 

reasonable measure of data utility should take into account both society’s perceived data utility 

and society’s estimated knowledge. We propose the following definition of global utility: 

Definition 8: We define the global data utility associated with the release of a data set 
R
D  as: 

 

 G.UTILITY (
R
D )= [SEK (

)(S

SOC
Θ

π ( • |
R
D )), PDU (

)(S

SOC
Θ

π ( • |
R
D ))]     (8) 

 

Using definition 8, we can represent the data utility associated to each form of data release 
R
D  

as a point q(
R
D ) in a Cartesian plane, with coordinates G.UTILITY(

R
D ), as shown in Figure 

2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G H 

E F 

Perceived 

data utility  

(PDU) 

Society’s estimated 

knowledge (SEK) 

(0,0) 

SOC
h

A
h

Figure 2: Global utility 
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Using threshold values 
SOC

h  and 
A

h  to discriminate between high and low values of the 

perceived data utility and society’s estimated knowledge, we can divide the plane into four 

sectors. Points in E correspond to data sets for which society’s inference is very imprecise 

(from the agency’s point of view), however society is very confident about its inference. 

Points in F correspond to data sets for which society’s inference is very precise both from the 

society’s and the agency’s point of view. In particular the point (0,0) represents a form of data 

release with maximum global utility that leads society to infer the correct value of its target 

with probability one. Finally, points in G correspond to data sets for which society’s inference 

is correct (from the statistical office point of view), but society is very uncertain about the true 

value of its target 
SOC

Θ  while points in H correspond to data sets for which society’s inference 

is inconclusive both from the agency’s and society’s point of view. 

 

 

8.  An optimality criterion 
 

Using the measures of global risk and global utility introduced in Sections 6 and 7, we propose 

the following optimality criterion for the choice of the best form of data release: 

 

Optimality criterion: Consider a given disclosure scenario (i.e. an original data set 
0
D , the 

intruder’s target, the society’s target, their prior distributions, their loss functions, the agency’s 

prior distributions, the agency’s loss functions, etc.). Let 
INT
t  and 

A
t  be threshold values for 

the risk of discredit harm and for the intruder’s estimated knowledge respectively and let D be 

the class of the alternative forms of data release. Denote by 
A

D
1
 the subset of D containing all 

data set in D that have risk of discredit harm and intruder’s estimated knowledge (with respect 

to the given disclosure scenario) below the corresponding thresholds (i.e. 
A

D
1
 consists of all 

data sets in D whose global risk belong to the region D in Figure 1). If 
A

D
1
 is empty then do 

not release any data set. If 
A

D
1
 is not empty then release the data set in 

A
D
1
 whose global 

utility (with respect to the given disclosure scenario) minimises the Euclidean distance from 

the point (0,0). 

The idea underlying this criterion is very simple. Among all safe data sets, i.e. those whose 

global risk is in the region D in Figure 1, the optimal one is the one whose global utility is 

closest to the point of maximum global utility (0,0). If a safe data set does not exist, no data set 

is released. 

Example 1 reconsidered. Suppose that an agency uses the Kullback-Leibler information 

statistic as its measure of divergence. Then the global risk of 
1
D  is G.RISK(

1
D ) = (-51.96, -1) 

the global risk of 
2
D  is G.RISK(

2
D )=(-2.96, -1), the global utility of 

1
D  is 

G.UTILITY(
1
D )=(-3.30, -2) and the global utility of 

2
D  is G.UTILITY(

2
D )=(-51.60, -2). The 

data sets 
1
D  and 

2
D  have the same risk of discredit harm (-1). This means that if the agency 

releases either 
1
D  or 

2
D , the intruder is equally likely to discredit the agency claiming that 
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confidential information has been disclosed. Nonetheless, the intruder’s estimated knowledge 

when 
1
D  is released is much smaller than the intruder’s estimated knowledge when 

2
D  is 

released, i.e. from the agency’s point of view the release of 
2
D  leads to a much better 

intruder’s inference than the release of 
1
D . Similarly, 

1
D  and 

2
D  have the same perceived data 

utility (-2), i.e., if either 
1
D  or 

2
D  is released, society’s uncertainty about the true value of the 

target 
SOC

Θ  is the same. However, society’s estimated knowledge when 
1
D  is released is much 

higher than the society’s estimated knowledge when 
2
D  is released. This means that, from the 

agency’s point of view, society’s inference when 
1
D  is released is much better than society’s 

inference when 
2
D  is released. Using threshold values 

INT
t  = -0.8 and 

A
t  = -40 there is only 

one safe data set, 
1
D , and therefore, according to the optimality criterion, the agency should 

release 
1
D . As we expected, 

1
D  is always the optimal form of data release, no matter which 

threshold values we use except for the case in which no safe data set exists and therefore no 

data set should be released. 

 

 

9.  Conclusions 
 

In this paper we present a decision-theoretic framework to measure the extent of disclosure 

and the data utility. The defining feature of our approach is that disclosure risk and data utility 

do not depend only on the released data and on the users’ (intruder’s and society’s) behaviour 

but also on the agency’s knowledge of the intruder’s and society’s targets. It is the agency’s 

knowledge of these targets that define the extent to which the users’ inferences are correct. The 

measure of disclosure that we present in Section 6 (the global risk) is a vector with two 

components. The first component (the risk of discredit harm) is a measure of what the intruder 

believes has been disclosed; the second component (the intruder’s estimated knowledge) 

measures what the intruder actually has disclosed (taking into account the agency’s knowledge 

of the intruder’s target). The appealing feature of this representation of the extent of disclosure 

is that it is general enough to represent the variety of ways in which people (data providers and 

agencies) think about disclosure. As we showed in Section 6, the global risk is compatible with 

different definitions of disclosure. With a suitable choice of the threshold values for the risk of 

discredit harm and the intruder’s expected knowledge we can prevent only correct inferences 

(disclosure harm), or we can prevent only the intruder from believing he has disclosed 

confidential information (discredit harm) or both. Our measure of data utility is a natural 

extension of the measure of disclosure. The global utility is a vector whose components 

express respectively what society believes it has learned about its target and what society 

actually has learned about its target from the released data. When we reconsidered example 1, 

we showed that optimal forms of data release using our criterion differ substantially from 

those that agencies traditionally adopt. 
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Abstract 

 

The prevalence of categorical observations that are unique in a sample and also still unique in the 

population is usually taken as the measure of the overall risk of disclosure in the sample data. 

Samuels (1998) suggested adopting evolutionary processes and their associated urn models as a 

framework for estimating this prevalence. We re-examine his proposal and suggest several 

extensions that arise naturally in the Bayesian statistical framework. We provide a brief report on 

some empirical studies using data provided by the Israel Central Bureau of Statistics. We also link 

this approach to ones based on the structure of cross-classifications allowing for differential, per-

unit forms of risk assessment. 

 

 

1.  Introduction 
 

When a sample unique is also a population unique identity disclosure becomes much more 

likely and hence a source of profound worry for data-gathering agencies. Many authors 

have attempted to estimate the prevalence of sample uniques which are population uniques 

in cross classifications of categorical variables, i.e., multiway contingency tables. As we 

noted in Fienberg and Makov (1998), methods based on a frequency of frequencies 

approach dominated this literature (e.g. see Bethlehem et al., 1990; Chen and Keller-

McNulty, 1998; Skinner and Holmes, 1998; Skinner et al., 1994). More recently, however, 

a number of authors suggested a more structured approach using log-linear and logistic 

models (e.g. Fienberg and Makov, 1998, and Skinner and Holmes, 1998) which attempt to 

capture the underlying probability structure of the contingency table. 

 

In a somewhat different vein, Samuels (1998), starting from Chen and Keller-McNulty 

(1998), suggested adopting evolutionary genetics-inspired processes utilising urn models 

as a framework for this problem, although his approach still builds on the traditional 

frequency of frequencies structure which treats cells with the same count exchangeably. In 

this paper, we first build upon Samuels’ approach and extend it using simulation 

methodologies associated with the Bayesian approach that arises naturally in these 

problems from taking mixtures of distributions. After outlining some numerical studies 

using data provided by the Israel Central Bureau of Statistics, we suggest one way to adapt 

the evolutionary urn model approach to draw strength from the contingency table structure 

using log-linear models and thereby accord different cells containing sample uniques 

different probabilities of being unique in the population. 
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2.  Urn models for genetic evolution 
 

Geneticists have long studied processes for explaining genetic diversity, and in the case of 

evolution in the absence of selection, suggested several models for explaining the growth 

of a population by means of reproduction and mutation. In particular, they have modelled 

the partition structure of the various allelic states of a gene by means of Polya type urn 

models, where an urn containing coloured balls is used to govern the growth in the number 

of balls and their colour (e.g. see Hoppe, 1987). The analogy with categorical data is as 

follows: coloured balls each representing an entry in a multi-way contingency table and the 

numbers represent the counts. 

 

By focusing on balls whose colour is singly represented, depicting unique entries in the 

sample, we allow the sample to grow to the size of the population, observing those 

uniquely coloured balls in the sample which remained uniquely coloured in the population. 

We start by considering a process, denoted by {Xn}, which we generate through a sequence 

of draws from an urn containing black balls and other non-black balls of various colours. 

Hence all balls are equally likely to be drawn from the urn. For convenience, we label the 

colours by natural numbers, with black being number 1 and the rest of the colours labelled 

sequentially as the need arises. 

 

The sampling regime of the urn model is as follows. At any stage, say n, we draw a ball 

from the urn. If it is black, we replace it along with an additional ball of a previously 

unobserved colour. If we draw a non-black ball, we return it to the urn along with another 

ball of the same colour. The process {Xn} records the colours of the additional balls added 

to the urn. If the process starts with only θ blacks ball then X1=1, X2=1 or 2, X3=1,2, or 3, 

etc. The sequence of draws results in a sequence of random partitions denoted by {Πn}, 

where, for a given value of n, the partition Πn is a vector a=(a1,a2,…,an), such that a1 is the 

number of colours that appeared once, a2 is the number of colours that appeared twice, etc. 

In the genetic context for a given n, this corresponds to a partition of a fixed sample of n 

selectively-equivalent genes into a number of different gene types (alleles), or in the case 

of a contingency table, it corresponds to a partition of the cells according to the frequency 

of the cell entries, i.e., the frequency of frequencies. Clearly, a1 is the number of balls each 

having a unique colour, and this corresponds to the count of the number of cells in the 

contingency table which contain an entry of 1. The quantity ii
a k=∑ provides the 

number of different colours present in the urn or nonzero cells in the contingency table, 

and ii
ia n=∑ is the sample size. In this partition we ignore the black balls since we 

regard them as the means for generating all other coloured balls or introducing mutations 

(new coloured balls). 

As an illustration, we take an example analysed by Chen and Keller-McNulty (1998) (see 

also Samuels, 1998) involving a sample of 87 959 elements cross-classified according to 

five categorical variables, taken from the 1980 decennial census. In this sample a1=222 

coloured balls appeared once, corresponding to 222 unique cells, a2=111 coloured balls 

appeared twice, corresponding to cells with two entries, etc. Finally, a3649=1 corresponds to 
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a single cell with 3 649 entries. For this example, there are k= ii
a∑ =1 024 non-empty 

cells, and a sample size of n= ii
ia∑ =87 959. 

 

Given a sample size n, the distribution of any partition, a, is given by 

 
[ ] 1

!
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!

i
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n

n n ai
i

n
P a n

i a

θ
θ

θ
=

Π =  =  ∏  (1) 

 

where [θ]n=θ(θ+1) …(θ+n−1). As a consequence of (1) we can easily establish that the 

probability distribution of the number of distinct colours k given n is 

  

 ( ) [ ], ,
nk k

nP k n Sθ θ θ=  (2) 

  

where Sn
k is a Stirling number of the first kind. The conditional distribution of a given k 

and n, is then 

 ( )
1

!
, !.i

n a

ik i
n

n
P a k n i a

S =
= ∏  (3) 

 

Equation (1) is known as Ewens’ sampling formula in population genetics (conjectured by 

Ewens, 1972, and established by Karlin and McGregor, 1972). The derivation of this 

formula was inspired by the non-Darwinian theory of evolution. Under this theory, the 

genetical variation is not due to natural selection but arises as a result of purely stochastic 

changes in gene frequencies. Equation (1) provides the partition distribution of a sample of 

n genes into various types when no selective differences are assumed between these types 

of genes. Kingman (1980) showed that this formula arises in various models, in all of 

which a population is genetically evolving through reproduction and mutation and it 

represents the limit distribution of the genetic content in a random sample taken from the 

population. 

 

Ewens’ formula is related to the GEM distribution, which is defined as follows. Suppose 

species (colours) have random frequencies P=(P1,P2,…) satisfying 0 < Pi < 1,
1 ii
P

∞

=∑ . 

Now suppose further that P1=w1, Pr=(1−w1)(1−w2)...(1−wr−1)wr, where the w1,w2,… are 

i.i.d., according to a Beta(1,θ) density. The decreasing order statistics (P(1),P(2),…) have the 

Poisson-Dirichlet distribution with parameter θ (Kingman, 1975). In a sample of n species 

(colours) from this population, the partition of the various species (colours) is distributed 

according to Ewens’ formula. 

If we assume that the partition density in equation (1) is correct, then the expected 

proportion of sample uniques which are population uniques is 

 
1
,

1

n

N

θ

θ

+ −

+ −
 (4) 
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(see Samuels, 1998, for details). Thus for a given sample size, for inferences focus on the 

estimation of θ. From Ewens (1972), we know that the method of maximum likelihood 

produces an approximate estimator, ˆMLEθ , which is the solution of 

 ln 1 .
n

k θ
θ

 
= +  

  (5) 

Samuels (1998) applied this model to the Chen and Keller-McNulty (1998) data and he 

found it inadequate, with higher proportions of population uniques than estimation with 

equation (5) would suggest. He modified the model by introducing an additional parameter 

M as follows. The sampling process starts with θ black balls and additional M balls of 

`primary’ colours, whose role is similar to those of the black balls, i.e., they are not 

counted as part of the sample or the population. If any of the M balls are drawn, however, 

they are replaced and another ball of the same colour is added. Essentially, the M coloured 

balls, which we do not count in the partition, help give the coloured balls a head start and 

thus should improve the estimate of the proportion of sample uniques that are unique in the 

population. The expected proportion of sample uniques which are population uniques is 

 
1
.

1

n M

N M

θ

θ

+ + −

+ + −
 (6) 

In his empirical examples, Samuels (1998) shows that this extended model does improve 

the resulting estimate of the fraction of sample uniques that are also population uniques for 

small sampling fractions, e.g. f=n/N on the order of 0.1. But as f grows, the model begins 

to increasingly underestimate the proportion. Thus we have empirical evidence for at least 

some actual official statistics data releases, that we need to incorporate the sampling 

fraction into our model somehow, perhaps through θ directly. We return to the issue of 

utilising the sampling fraction below. 

 

 

3.  Bayesian extensions to urn model structure 
 

Because of their simple structure, we can’t expect the urn models to represent the actual 

process governing the recreation of a population. We can modify them, however, and we 

can make them sufficiently flexible to produce potentially useful results. 

The posterior distribution of θ, given the sufficient statistic k, is given by 

 ( )
[ ]

( ), ,
k

n
h k n g

θ
θ θ

θ
∝  (7) 

where g(θ) is a prior distribution of θ. A simple conjugate prior distribution for this 

likelihood does not seem to exist; however, since the Ewens’ distribution of equation (1) 

belongs to the exponential family, it is likely that it will lend itself to adaptive rejection 

sampling of the kind reported in Smith and Gelfand (1992) and Gilks (1992), and hence we 

can investigate the posterior distribution in (7) by means of simulation. We can achieve 

additional flexibility if we choose the prior distribution to be a mixture of the type 

πg1(θ)+(1−π)g2(θ). In this case the posterior expectation of the proportion of uniques in 

the sample which are also population uniques is given, approximately, by 
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( ) ( ) ( )
( ) ( ) ( )

1 2

1 2

1 1
,

1 1

n E E

N E E

π θ π θ

π θ π θ

+ + − −

+ + − −
 (8) 

where Ei is the expectation with respect to gi. By letting M+θ  = πE1(θ)+(1−π)E2(θ) in (6), 

we obtain (8) and hence the prior mixture provides the additional flexibility of the two-

parameter model discussed in Samuels (1998). 

 

Samuels takes a single sample of size n and uses it for estimating θ. This could be 

sufficient if the urn model were accurate. Since this is not the case and since the 

methodology is more reliable the larger is n (this is common to other methodologies in the 

uniqueness context) it may be advisable to collect data from several samples and 

incorporate the combined information for estimating θ. This can be done by artificially 

creating such samples, i.e. by taking samples of varying size, without replacement, from a 

population or from a particularly large sample. Suppose we have at hand q such samples, 

(a1,n1),...,(a
q,nq), where the pair (a

i,ni) represents the partition of the ith sample of size ni. 

Analysis now relies on a richer likelihood incorporating all q of the samples: 

 ( )
[ ]

1 1
, , ,

i

i

k
q

q ni
n n

θ
θ

θ
=

=∏l K  (9) 

where ki is the number of distinct colours in the ith sample of size ni. Bayesian analyses 

now work with the posterior distribution: 

 ( )
[ ]

( )1 1 1
, , , , , .

i

i

k
q

q q ni
h k k n n g

θ
θ θ

θ
=

∝∏K K  (10) 

Using equation (10), we can obtain a value of θ which has an `average’ property since it 

attempts to account for values of θ suitable for samples constituting small and large sample 

fractions. 

Based on Samuels’ (1998) empirical work and our own, we conjecture that, for every 

sample fraction fn  = n/N, there should be a different value of θ for which this methodology 

produces reasonable results. We therefore propose to replace θ as a single parameter by a 

multi-parameter function, say γ(θ,τ), where τ is a vector of training parameters, e.g. 

 ( )
2

,
n
f

δ
β

γ θ τ θ
 −
 =  (11) 

which converges to θ as n→ N, or the sampling fraction fn → 1, at a rate which is dictated 

by β and δ. We can exploit the new structure γ(θ,τ) to estimate θ and τ either by using a 

subsampling approach or through a Bayesian approach. 

 

3.1  Estimation through subsampling 

 

In the subsampling approach we repeatedly subsample from the released sample of size n 

to produce m replicates or independent subsamples for each of q subsample sizes 

n1,n2,…,nq, with corresponding sampling fractions 1 2 q, ,...,fn fn fn . Consider subsample size 

ni. We compare each of the m replicate subsamples to the full released sample of size n 

from which it was drawn, and we record the fraction of unique individuals in the 
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subsample remaining unique in the full released sample, say ˆ
i
n jp for j=1,2,…,m. If Ewens’ 

urn model were correct then we could compute the value of 
i
n jθ , say ˆ

i
n jθ which would 

produce a fraction ˆ
i
n jp from equation (4), namely, 

 
ˆ

ˆ ,
ˆ 1

i

i

i

n j

n j

n j

n
p

N

θ

θ

+
=

+ +
 (12) 

yielding 

 
( ) ( )ˆ 1 1

ˆ
ˆ1

i

i

i

n j

n j

n j

p N n

p
θ

− − −
=

−
, (13) 

for i=1,2,…,q, and j=1,2,…,m. According to Ewens’ model, however, we can also 

compute the approximate maximum likelihood estimate of 
i
n jθ  finding the solution of 

equation (5) which we denote by ˆ
i
n jθ ∗
. We now choose τ̂ , namely α̂  and δ̂ , so that 

( )ˆ ˆ,
i
n jγ θ τ∗

is closest in some sense to ˆ
i
n jθ ∗
.  Least-squares is an obvious option. We can do 

this separately for each subsampling fraction, 
i
nf , or in some joint fashion with respect to 

both replicates and the q different subsampling fractions. 

Alternatively we can work directly in the probability scale, comparing the values of the 

empirically observed proportion ˆ
i
n jp  with the estimated probabilities from equation (4) 

using the approximate maximum likelihood value for 
i
n jθ , ˆ

i
n jθ ∗
. Again, least-squares is an 

obvious option. We can do this separately for each subsampling fraction, 
i
nf or in some 

joint fashion with respect to both replicates and the q different subsampling fractions. 

The preceding subsampling method is based on `backward evaluation’ to study the 

mechanism which changes the partition of the data in the multi-way table as the sample 

fraction decreases. As an alternative we can follow a `forward evaluation’ approach, 

generating m sequences of subsamples of increasing size by literally drawing successive 

individuals from the released sample of size n without replacement. We will report details 

on this approach in a full version of this paper. 

Our ultimate aim in both subsampling approaches remains the same: to estimate the curve 

relating the sample fractions with the actual estimates of probability that unique 

individuals in the subsample are also unique in the entire unreleased data held by the 

agency. 
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3.2.  Estimation via Bayesian updating 

 

The posterior distribution of θ now takes the form 

 ( )
( )

( )
( ) ( )1 1 1

,
, , , , , ,

,

i

i
i

k

q

q q ni k
h k k n n g f d

γ θ τ
θ θ τ τ

γ θ τ
=

 
 

∝  
  
  

∏∫K K  (14) 

where f(τ) is a prior on the parameters of the γ function. However, we need to obtain 

estimates of τ and this will be done through the joint posterior distribution 

 ( )
( )

( )
( ) ( )1 1 1

,
, , , , , , .

,

i

i
i

k

q

q q ni k
h k k n n g f

γ θ τ
θ τ θ τ

γ θ τ
=

∝
 
 

∏K K  (15) 

For estimation of θ and τ we use the Gibbs sampler (e.g. see Smith and Gelfand, 1992). 

We can use θ̂  and τ̂  for estimating the expected proportion of sample uniques which are 

population uniques as follows: 

 
( )
( )

ˆ ˆ, 1
.

ˆ ˆ, 1

n

N

γ θ τ

γ θ τ

+ −

+ −
 (16) 

As an example, if we substitute equation (11) into equation (16), we obtain 

 

ˆ
ˆ

ˆ
ˆ

2

2

ˆ 1
,

ˆ 1

n

n

f

f

n

N

δ
β

δ
β

θ

θ

 −  

 −  

+ −

+ −

 (17) 

clearly demonstrating how the sample size influences the estimation process by means of 

β̂  and δ̂ , and the sampling fraction, fn. 

 

A more coherent Bayesian treatment avoids plug-in estimates and substitutes simulated 

values for β and δ generated from their respective marginal posterior distributions. Thus, 

we obtain the posterior distribution of the expected probability that a sample unique is also 

a population unique, and hence have a mechanism for providing additional information 

concerning the variability associated with estimating this probability. 

 

 

4.  Numerical studies 
 

Our numerical studies utilise 60 000 records taken from the 1996 labour force survey 

gathered by the Israeli Central Bureau of Statistics. For our experiments we assume that 

the released records consist of five chosen variables forming a multi-way table with 26 400 

cells. We subsampled the 60 000 records forming six subsamples N1,N2,..,N6 representing 

potential population sizes. From each of these `populations’, we took subsamples n1,n2,...nq 

representing the released samples. We replicated subsampling n out of N 3 times. The 
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following table provides the detailed design of the experiment. 

 

Population size  Released sample size  Fraction  Fraction’s symbol  

N  n    

5 000 1 000 0.2 E 

10 000 1 000 0.1 D 

10 000 5 000 0.5 I 

15 000 1 000 0.067 C 

15 000 5 000 0.334 K 

15 000 10 000 0.667 K 

20 000 1 000 0.05 B 

20 000 5 000 0.25 F 

20 000 10 000 0.5 I 

20 000 15 000 0.75 L 

25 000 1 000 0.04 A 

25 000 5 000 0.2 E 

25 000 10 000 0.4 H 

25 000 15 000 0.6 J 

25 000 20 000 0.8 M 

30 000 25 000 0.834 N 

 

As the released sample size n increases one expects an increase in k, the number of 

`colours’, corresponding to the number of non-empty cells in the multi-way table. From a 

graph of k vs. n for all subsamples (Figure 1), the diminishing rate of the increase is 

obvious. The intrinsic curve relating k to n is a function of the data and the underlying 

model explaining it. 
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As k increases the probability that a sample unique is also a population unique increases. 

This is clearly shown in Figure 2 where Pusup represents the measured proportion of sample 

uniques which are also population uniques. ‘Sign=fraction’ indicates that letters appearing 

in the figure correspond to sample fractions. 



S. E. Fienberg and U. E. Makov  Uniqueness, urn models and disclosure risk 

 32 

 
 

 
 

If the urn model were correct the expected proportion of sample uniques which are 

population uniques, given in (4), was supposed to match, to some degree of accuracy, the 
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measured proportion of sample uniques which are also population uniques. Figure (3) 

clearly demonstrates the failure of the urn model. Here P̂ denotes the estimated expected 

proportion of sample uniques which are population uniques, obtained by substituting the 

MLE of θ into (4). The marked underestimation demonstrated in Fig. (3) clearly cannot be 

rectified by modifying the value of θ as suggested in (13). This is demonstrated in Figure 4 

where the vertical axes corresponds to the value of θ that would produce, via (4) or (13), 

Pusup. 

 

 

Clearly, for most subsamples the use of (4) cannot be justified since it entails negative 

values of θ. Equation (4) can be modified to produce values close to those of Pusup as 

follows 

 
1
.

1

n

N

θ

θ∗

+ −

+ −
 (18) 

Here N ∗
is a modified population size to be estimated through the following equation 

 sup

ˆ 1
.

ˆ 1

MLE
u

MLE

n
P

N

θ

θ∗

+ −
=

+ −
 (19) 

Solving for N∗
, 
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( )( )sup

sup

ˆ1 1
,

u MLE

u

n P
N

P

θ
∗

+ − −
=  

we plot, in figure 5, NR N N∗= vs. ˆMLEθ  for all subsamples. 

 

Clearly, NR can be explained by the sample fraction, ˆMLEθ  and possibly the interaction 

between the two. Indeed, when a linear model was fitted to the data the ˆMLEθ , fraction and 

their interaction proved significant (p-values  = 0.0000, 0.0000, 0.0029,respectively). The 

adequacy of the model is clearly demonstrated (we note the presence of suspected outliers) 

in its the residual plot (Figure 6). 
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The potential benefit of the model was examined as follows: A linear model was fitted 

using all subsamples such that 15000N ≤ . Using the estimated parameters of the model 

and the actual values of the ˆMLEθ ’s, the Pusup were predicted for the remaining subsamples 

(N ≥ 15 000). The result is shown in Figure 7 where the measured Pusup and the predicted 

Pusup are plotted. Clearly, though not sufficiently accurate, the results are promising. 
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A full Bayesian analysis should include three phases: 

• The prediction of k via n. This would amount to estimating the curve shown in 

Figure 1. 

• The prediction of θ based on the observed k’s. 

• The prediction of Pusup via a linear model based on a given sample fraction and the 

predicted values of θ. 

the second phase was attempted for N=25 000 and n=5 000. For a likelihood function 

based on (9), a normal prior distribution for θ was chosen with mean and variance 

empirically estimated using the values of the ˆMLEθ ’s. Employing a rejection method, the 

posterior distribution of θ was obtained and shown in Figure 8. 
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The third phase was attempted as follows: 

The β s of the linear model were given a normal prior distribution and σ2, the variance of 

the noise, was given an inverse gamma prior distribution. Using the Gibbs sampler, 

posterior distributions of the βs were generated based on subsamples for which 1500N ≤  

and then used to predict NR and Pusup  via (19) for N = 25000 based on n=1000. Figure 9 

shows the posterior distribution of the predicted Pusup. 
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The measured Pusup is indicated by a vertical line. Clearly, the distance between the actual 

Pusup and the mode of the posterior distribution is only about 0.05. Further research is 

needed to reduce this discrepancy. 

 

 

5.  Incorporating contingency table structure 
 

To this point, the models we have been using treat cells with equal sample counts 

exchangeably, ignoring their actual placement in the contingency table in which they are 

situated. Thus Ewens’ model treats all cells with zero counts alike in choosing to convert 

one of them to a sample unique whose cell count is 1, or all cells containing sample 

uniques alike in choosing one to convert to a cell with a count of 2. But, as the literature on 

log-linear models for contingency tables makes clear, all sample zeros are not all alike and 

they often correspond to cells with very different underlying probabilities, expressible in 

terms of marginal totals of different magnitudes (e.g. see Bishop et al., 1975). Thus we 

desire a model that combines some of the attractive features of the urn schemes for the 

frequencies of frequencies described earlier in this paper with something that can reflect 

the differential treatment of the log-linear models. In the previous sections, the urn models 

we considered treated all cells such that fi=j exchangeably as part of the partition function 
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a, and focused on the determination of the prevalence ( )∑
−

==
K

i ii fFP
1

1/1 . Here we 

focus on the evaluation of P(Fi|fi) separately for each cell i, because we think in terms of a 

superpopulation for the cross-classification such that a log-linear model of the form 

 ( ) ( )log i ig uπ =  (20) 

describes the underlying structure of the population cell probabilities. Thus we can no 

longer treat the components of the prevalence as exchangeable. One way to think about 

doing this is to think in terms of urn models where the balls are assigned unequal 

probabilities of selection or weights as follows: assign each cell in the cross classification 

its own colour, and its own a priori probability. Assign each coloured ball a weight that is 

proportional to the posterior expected value under model (20), based on the balls that 

currently make up the urn. Begin the process with an urn containing θ black balls. Draw 

balls from the urn with unequal probabilities that are determined in proportion to their 

weights. When we draw a black ball, return it to the urn and add a new colour from a pool 

of colours of yet unrepresented cells drawn in proportion to the weights (estimated 

probabilities) associated with the yet unobserved cells. When we draw a coloured ball, 

return it to the urn with another ball of the same colour. Because this modified urn scheme 

actually builds on the log-linear model for the cell probabilities, it gains strength from the 

observed marginal totals corresponding to the minimal sufficient statistics, and it gives 

differential attention to the growth of cells as a function of the growth of the relevant 

marginals. Thus the cell-by-cell components of the prevalence are no longer treated 

exchangeably. This weighted urn model relies initially on the a priori assessment of cell 

probabilities and then uses Bayesian methods to update those probabilities as data 

accumulate. But it also utilises the mechanism of the black balls to insert an evolutionary 

structure to the composition of the urn. Further variations on this theme would allow not 

only for θ to vary as a function of the sampling fraction but also directly tie its magnitude 

to information about the underlying cell probabilities, {πi}, for the cross-classification. 

Since all of these urn models rely on externally computed weights, we can easily substitute 

a more elaborate Bayesian model-averaging approach to allow for our lack of certainty 

about the appropriate log-linear model in equation (20). The challenge that faces us is the 

determination of the properties of such weighted urn models. We can investigate these 

properties directly through simulation. 
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Abstract 

 

After the approval of the 1978 law on voluntary abortion in Italy, the Italian healthcare system 

allowed the practice of voluntary abortion before the third month of pregnancy. Since 1980, the 

Italian Institute of Statistics (ISTAT) has collected data on the abortion frequency per month and 

per administrative local area. Although a preliminary analysis of the data showed that, after an 

initial increase in the number of abortions, the number progressively decreased over the years, 

there is no insight into the existence of periodicity in the time series and into the local effects related 

to the regional habits and social environments. The aim of our study is therefore to extract local 

trends and periodicity from the data collected by ISTAT, by combining a ‘structural model’ of the 

time series and Bayesian statistics. This paper describes the stochastic model and its Bayesian 

estimation through a Markov-Chain Monte Carlo approach on the Italian abortion data. 

 

In our analysis, the trend component is very regular and shows clearly how after an initial period of 

increase, after June–July 1983 the voluntary abortion trend decreases constantly until the end of the 

study. The periodic component shows an astonishing regularity too, suggesting that the Italian 

people have a seasonal preference for voluntary abortion. 

 

 

1. Introduction 
 

After the approval of the 1978 law on voluntary abortion in Italy, the Italian healthcare 

system allowed the practice of voluntary abortion before the third month of pregnancy. 

Since 1980, the Italian Institute of Statistics (ISTAT) has collected data on the abortion 

frequency per month and per administrative local area (province). It is interesting to 

analyse the accumulated data in order to provide some elements to the public discussion on 

a theme with significant ethnical implications.  In particular, we extracted from the raw 

data: (i) the average course in order to extract change points; and (ii) the periodic 

components in order to highlight possible seasonal preferences for voluntary abortions. 

Finally, we also looked for regional similarities or differences in this practice in order to 

start a sociological analysis. 

 

Several statistical techniques are available to study seasonal effects, but, in general, they 

are only able to extract a global trend and a global periodic component: that is, the best 

trend and the best periodic component over the whole period. Using moving windows or 

other techniques, such as Kalman filtering, it is possible to extract ‘local’ components. 

However, such approaches are often not flexible enough to follow the temporal pattern 
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of real data due to the fixed window length. If the time window is unnecessarily long, the 

trend may not capture complex patterns made of slow variations; on the other hand, if the 

time window is too short, the algorithm does not provide a sufficiently smooth trend 

estimate. Therefore, the choice of the time window turns out to be ad hoc. 

In this paper, both the trend and periodic components are modelled as randomly varying 

over time. If the statistical properties of such components were known in advance, it 

should be possible to perform the structural analysis by means of the Kalman filter. In 

order to enhance the generality and usability of the method, we prefer to describe the rates 

of variation as random variables whose variances are treated as ‘hyperparameters’ within a 

Bayesian estimation framework. The computation of the posterior densities of the rates 

given the data involves intractable integrals that hamper an analytic approach. Therefore, 

we resort to a Markov chain Monte Carlo method that produces the desired estimate as the 

result of a stochastic simulation procedure. 

 

 

2. The database 
 

The database provided by ISTAT consists of two relational tables: the first contains the 

number of abortions per year, month and local area, and the second the encoding of the 

local areas. The first table has 16 880 records, corresponding to the years 1980–94 and to 

95 local areas. We limited the analysis to the years 1980–94 because after that time several 

new local areas were added and inclusion/exclusion of these areas could bias the study. 

The database had 220 missing values, corresponding to 1.3 % of the data records. 

 

In this paper, we will consider only the voluntary abortion time series (VATS) at a national 

level obtained by adding all the local data for each month. In this way, a complete time 

series of 180 sets of data was obtained. However, some data on VATS at the national level 

may underestimate the real number of the voluntary abortions performed because some 

local data are not available for some months. In general, this problem does not seem to be 

very important since the number of local areas is very high, while the missing data are 

distributed along the whole period under investigation. 

 

 

3. The methodology 
 

To analyse the VATS, we adapted a methodology that has been applied to the blood 

glucose time series in the first-type of diabetes monitoring (Bellazzi et al., 2000). 

 

We assume that each of the data of the time series can be expressed as a sum of separate 

components, that represent its underlying structure. In the case of the VATS, three 

components are considered — a trend component ti, a cyclic (or periodic) component ci 

(with a period of one year) and a noise component vi (taking into account the uncertainty of 

the data) — so that 

 iiii vcty ++= , (1) 
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where vi is the number of abortions (at the national level) at time i. However, because a 

generic periodic signal can be written through a Fourier series expansion, the periodic 

component c can be approximated with a finite sum of sine or cosine waves at appropriate 

frequency. 

 

For reasons that will be clear later, it is convenient to rewrite equation (1) as a state–space 

discrete-time model, where the sampling times correspond to the monthly grid: 
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000 ,,,,,,,,, rcrcrcrcst , where s and r are 

auxiliary variables. In particular, si is the increment of the trend component between i and 

i + 1. In fact, 

00 sitti += . 

Hence, the trend component is just a straight line, whereas the cyclic component is a linear 

combination of sine and cosine waves (equation (6)). In fact, the periodic component c is 

modelled through its truncated Fourier series, containing the fundamental harmonics and 

the higher-order harmonics with frequency ≤ 1/3, in order to have at least three samples in 

one period. Since we look for cyclic components with a period equal to one year, while the 

data are available monthly, the fundamental frequency f should be taken as 1/12 and the 

first four harmonics have to be considered. 

 

The model (equations (2–7)), which is deterministic in the state equations, is not able to 

capture the variability of the time series, which can present trend and cyclic changes within 

a few years (or a few months). A suitable approach, that allows for both trend and cyclic 

variations, involves a stochastic description of the abortion dynamics. This is obtained by 

adding random noise to both the trend and cyclic components in equations (2–5). In 

particular, we used the following model: 
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the initial conditions are (a priori) independent random variables. w1i and w2i describe the 

random fluctuations of the trend and the periodic components. For simplicity, random 

fluctuations of the periodic component in this model are allowed only in the highest of the 

considered harmonics. In principle, we could add random variables to every harmonic, but 

the complexity of the stochastic model is likely to increase without providing appreciable 

benefits. 

 

Following standard notation, we can rewrite the dynamic model (equations (8–15)) as 

 
iii

iii

vHxy

GwFxx

+=

+=
+1

 (16) 

  (17) 

where 

,][ )4()4()3()3()2()2()1()1( T

iiiiiiiiiii rcrcrcrcstx =  

,][ 21

T

iii www =  

],0101010101[=H  
T

sin

sin

sin

sin

sin

sin

sin

sin

F








































































−

































−


































−

































−


















=

3

2
cos

3

2
00000000

3

2

3

2
cos00000000

00
4

2
cos

4

2
000000

00
4

2

4

2
cos000000

0000
6

2
cos

6

2
0000

0000
6

2

6

2
cos0000

000000
12

2
cos

12

2
00

000000
12

2

12

2
cos00

0000000010
0000000011

ππ

ππ

ππ

ππ

ππ

ππ

ππ

ππ

, 



Research in Official Statistics  Number 1/2001 

 45 

T

G




=

1000000000
0000000010

, 

with the initial condition 
Trcrcrcrcstx ][ )4(

0

)4(

0

)3(

0

)3(

0

)2(

0

)2(

0

)1(

0

)1(

0000 = . 

 

In order to complete the stochastic model specification, it is necessary to assign the 
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where N(⋅,⋅) denotes the normal distribution and diag is the diagonal matrix. 

 

Unlike the approach for standard Kalman filtering, we consider variances 
2

1
wσ  and 

2

2
wσ  as 

unknown variables too; they are ‘hyperparameters’ to be estimated from data. We assume 

that the unknown variances have an inverse gamma distribution with known parameters 

(see Magni et al., 1998, for a detailed discussion). In this analysis, the parameters of the 

inverse gamma distribution are chosen in such a way that the prior distribution of the 

hyperparameters is sufficiently flat: in this sense, the final estimates are relatively 

insensitive to the tuning of the inverse gamma distributions. On the other hand, we assume 

that the statistics of the measurement error iv  are known completely, i. e. we consider the 

2

i
vσ as fixed parameters.  Our approach can easily be generalised to cope with the problem 

in which the statistic model of measurement error is not completely known (Magni et al., 

1998). 

 

Starting from equations (16, 17), we can rewrite the dynamic model in the following static 

model, in order to estimate trend and periodic components easily: 
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and 
T

nvvv ][ 10 −
= K . The matrix L is introduced to manage missing data (Magni et al., 

1998); when there are no missing data, L is an n × n identity matrix. 

 

Given the stochastic model (equations (18, 19)), the Bayesian point estimation problem 

involves the computation of the first and second moments of the joint posterior probability 

distribution: 
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T
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T
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T

nyyy ][ 10 −
= K . 

 

This problem cannot be solved in a closed form, and thus we use Markov chain Monte 

Carlo (MCMC) methods. MCMC methods are based on two steps: a Markov chain and a 

Monte Carlo integration. By sampling from suitable probability distributions, we generate 

a Markov chain that converges (in distribution) to the target distribution, i.e. the 

distribution to be integrated. Then, we calculate the expectation through the Monte Carlo 

integration over the obtained samples.  In this paper, we use the well-known Gibbs 

sampling scheme, proposed originally in Geman and Geman (1984). 

 
Figure 1: Bayesian model of the time series 

 

Given the stochastic model (equation (18)), schematised in Figure 1, it is possible to derive 

the full conditional distributions necessary to run the Gibbs sampler estimator: 
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parameters of the  prior gamma distributions of the variables 
2
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1 wσ and 
2
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1 wσ . 

 

From the samples of )|,,( 22

21

yzp ww σσ  drawn iteratively by the Gibbs Sampler using 

equations (21–23), it is straightforward to derive through equation (19) the sampling 

posterior distribution of the trend and cyclic components ( )|,,,( 22

21

yctp ww σσ ). 

 

The adopted scheme provides for drawing samples of z (the vector containing the initial 

state value and all the other stochastic components of the system, i.e. 21 ,ww ) from a 

multinormal distribution of 2(n – 1) + 10 dimensions. This implies that when n is very 

large it is computationally expensive to invert the matrix D, and to extract samples from a 

high-dimensional multinormal distribution. To solve these problems, it is possible to 

partition the set of the stochastic parameters in a different way or to resort to more general 

simulation strategies involving dynamic linear models (Carlin et al., 1992; Carter and 

Kohn, 1994; West and Harrison, 1997). 

 

For the analysis of VATS, we took 
82

4321 10,1.0,1,10,1 =====
i

xoσγγγγ and 

300002 =
i
vσ . By choosing large values for 

2

i
xoσ , the posterior distribution of the initial 

conditions will be driven only by the data. 

 

 

4. Results 
 

The official data collected from ISTAT about the voluntary abortions in Italy on a monthly 

basis for the period from 1980 to 1994 are reported in Figure 2(a). 
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(a) (b) (c) 

Figure 2: Monthly voluntary abortions in Italy from January 1980 to December 1994: 

(a) original time series; (b) data grouped by years; (c) data grouped by 

months 

 

In Figures 2(b) and 2(c), the same data are represented grouped by years and by months, 

respectively. In Figure 2(b) only a qualitative increasing and decreasing trend is visible, 

whereas Figure 2(c) shows a slightly average decrease in the second part of the year, 

information that was also visible in the original VATS as depicted in Figure 2(a). 

 

To separate trends and possible periodic components, we performed the Bayesian analysis 

described in detail in the previous section. After having performed 1 650 runs of the 

MCMC scheme on the VATS (1 500 plus 150 for the burn-in (1)), we were able to separate 

the trend and the periodic components, reported in Figures 3(a) and 3(b), with their 95 % 

confidence intervals. 
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(a) (b) 

Figure 3. Monthly voluntary abortions in Italy from January 1980 to December 1994: 

(a) original data (stars) and reconstructed trend component with its 95 % 

confidence intervals; (b) the reconstructed periodic component with its 

95 % confidence intervals 

 

                   

(1) The convergence of the Markov chain is verified by using the Raftery criterion (Raftery and Lewis, 1996). In 

particular, by choosing q = {0.025 0.25 0.5 0.75 0.975}, r = {0.02 0.05 0.01 0.05 0.02} and s = 0.95, we verified that 
the burn-in is M = 130 and the required length of chain is N = 1 380. 
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Unlike what one sees in the original data, the trend component is very regular; after an 

initial period in which voluntary abortions in Italy increased, starting in June–July 1983 

voluntary abortions decreased constantly until the end of the study. Also, the periodic 

component shows an astonishing regularity in the studied period. Figure 4 shows a 

different view of the periodic component to highlight the presence of typical patterns by 

taking the point estimates of the cyclic component over the 15 years under study,  

superimposed on one another. 
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Figure 4: Voluntary abortions in Italy: the reconstructed (point estimates) periodic 

component for the years from 1980 to 1994 

 

The periodic component clearly shows high values between January and June and low 

values in the other months with a well-defined minimum in August. Moreover, there is a 

clear decrease from March to April, and, finally, in the first part of the year (until June), 

even months seem to be locally lower than the odd months. 

To better understand the results, we need to know if the highlighted behaviour of the 

VATS is caused by the dynamics of the births and by the seasonality of conceptions, which 

can be found by analysing the Italian birth time series (BTS). 

 

4.1.  The Italian birth time series 

 

From the ISTAT publications, we have extracted the number of births in Italy for each 

month over the years 1980–95. We were unable to find data for 1992, but the Bayesian 

framework we are exploiting allowed us to handle this problem coherently.  

 

The course of the BTS trend differs substantially from that of VATS.  This suggests that 

the voluntary abortion dynamics are not completely explained from the course of births.  

Moreover, the birth periodic component is regular as well.  In particular, the birth rate is 

roughly higher from May until October whereas it is lower in the other months.  In 

addition, local differences are present among even and odd months, especially in the first 

half of the year. 
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To compare the dynamics of the BTS and VATS, we considered the voluntary abortion 

rate (VAR) defined in each month as the ratio between the number of abortions in that 

month and the total of conceived children. Formally, 

1000*
6++

=
ii

i
i

BVA

VA
VAR  

The delay of six months between abortions and the correspondent births was chosen 

because abortions are generally performed during the third month of pregnancy. 

 

4.2.  The voluntary abortion rate 

 

We can study how the voluntary abortion rate time series (VARTS) change in the years 

1980–94.  Because BTS data are not available for 1992, the VAR is not defined in the 

period from July 1991 to June 1992. 

 

Performing the structural analysis on this time series in a way similar to the previous one 

(the only difference is the value of 162 =vσ  and of 101 =γ ), we can extract trend and 

cyclic components. 
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Figure 5: Monthly voluntary abortion rate in Italy from January 1980 to December 

1994: (a)  data (stars) and reconstructed trend component with its 95 % 

confidence intervals; (b) the reconstructed (point estimates) periodic 

component for the years from 1980 to 1994 

 

Figures 5(a) and 5(b) show why births do not explain completely the dynamics of the 

VATS. In fact, the trend of VARTS clearly depicts that the number of abortions per 1 000 

conceptions (approximated with the sum of births and voluntary abortions) changes over 

the time. In particular, after the approval of the abortion law, an increased number of VAR 

is apparent (from about 240/1 000 to about 280/1 000 in the 55th month — July 1984), 

whereas the number of abortions decreases constantly until the end of the considered 

period.  Confidence intervals on the trend component are larger in 1991/92 (Figure 5(a), 

138th–150th months) when no data are available. 
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The periodic component of VARTS is also not completely explained by the seasonality of 

the conceptions. In fact, the VARTS shows a significant periodic component (Figure 5(b)). 

Such a component is roughly constant over the studied period, and its amplitude (80) 

represents about  40–50 % of the mean value of the VARTS. Moreover, it is easy to see 

that the number of abortions over 1 000 conceptions is higher during spring months 

(March, May, June) and lower at the end of the year. April, August and November show 

relevant local changes. 

 

 

5. Conclusions 
 

In this paper, we have proposed a methodology to perform a structural Bayesian analysis 

on Official Statistics time series data. 

 

1. The method can be effectively used in time series analysis, when data missing at 

random are present and when it is also important to derive interval estimates of trends 

or seasonality curves. 

2. The method is particularly useful for detecting local changes in the structural 

components of the time series; such changes may then be related to external factors 

that should be hypothesised on the basis of the particular problem at hand. As a 

consequence, we believe that the computational machinery we used is more interesting 

for relatively short time horizon (or at least for a limited number of data) problems 

than for the analysis of massive data sets, collected over very long time periods or with 

very high frequency. 

3. The Bayesian framework allows us to derive the distribution of all the parameters of 

interest given the data. Thus, from this distribution, it is possible to derive the point 

estimates and to quantify their credibility immediately. 

 

For the application presented in this paper — the analysis of the voluntary abortions in 

Italy from January 1980 to December 1994 — the preliminary results suggest that this 

phenomenon is constantly decreasing and is also relative to the birth dynamics. Moreover, 

we found a surprising significant seasonality in voluntary abortions, also when data are 

compared with birth time series. This consideration can be an interesting starting point for 

a sociological analysis that might focus on temporal/regional differences and similarities in 

the voluntary abortions due, for example, to modification/difference in cultural 

backgrounds, habits or in the services provided by the national healthcare system. 

 

The generality of the proposed method allows several extensions to our analysis. For 

example, by adopting a similar model, it is possible to derive a more parsimonious 

description of the time series assuming random fluctuations in the yearly components (in 

this way, the best trend and periodic components on the whole year are derived). 
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Abstract 

 

This paper uses Bayesian modelling techniques to analyse a data set extracted from the British 

general household survey. The models used are Bayesian networks, which provide a compact and 

easy-to-interpret knowledge representation formalism. An issue considered is the need for 

automated Bayesian modelling. 

 

 

1.  Introduction 
 

The general household survey is a yearly survey, based on a sample of the general 

population resident in private households in Great Britain. The general household survey 

began in 1971 and data is available from 1973 onwards. It is widely regarded as a ‘gold 

standard’ because of survey design and data collection and has been copied by several 

countries. The goal of this survey is to provide continuous information about the major 

social fields of population, housing, education, employment, health and income. Since the 

survey covers all these topics, it provides users with the opportunity to examine not only 

each topic separately, but also their mutual interplay.  Summary of the statistical findings 

are published by the British Office of National Statistics, and are typically presented via 

contingency tables relating two or three variables at a time, (see Thomas et al., 1998). We 

believe that this communication style fails one of the primary objectives of the survey, 

which is to offer, to a non-technical audience, an up-to-date picture of living in Great 

Britain. 

 

To avoid the fragmentation of the overall information, one should try to build a model that 

associates a large number of variables. To be a communication tool, however, such a 

model needs to be easily understandable, and easy to use. Understandability and usability 

being the requirements, we focus on Bayesian networks, which are known for providing a 

compact and easy-to-use representation of probabilistic information, (see Lauritzen, 1996, 

and Cowell et al., 1999). A Bayesian network has two components: a directed acyclic 

graph and a probability distribution. Nodes in the directed acyclic graph represent 

stochastic variables and arcs represent directed stochastic dependencies among these 

variables. Thus, the graph provides a simple summary of the dependency structure relating 

the variables. The probability distribution for the network variables decomposes according 
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to the conditional independencies represented by the directed acyclic graph, and each 

component — a conditional probability table — quantifies the remaining directed 

dependencies. The graph is an effective way to describe the overall dependency structure 

of a large number of variables, thus removing the limitation of examining the pair-wise 

associations of variables. Furthermore, one can easily investigate undirected relationships 

between the variables, as well as making a prediction and explanation, by querying the 

network. This last task consists of computing the conditional probability distribution of one 

variable, given that values of some variables in the network are observed. Nowadays there 

are several efficient algorithms for probabilistic reasoning, which take advantage of the 

network decomposability (Castillo et al., 1997), and commercial programs such as 

Bayesware Discoverer (available at http://www.bayesware.com) or Hugin (available at 

http://www.hugin.com) implement these algorithms. 

 

The problem to be addressed, and we believe one of the reasons for the slow gain in 

popularity of these models  in the statistical community, is how to practically build a 

Bayesian network from a large data set using Bayesian methods. This is considered in the 

next section. In Section 3 we analyse a data set extracted from the 1996 general household 

survey. The model selected is a network that displays a global picture of living in Britain 

and discovers interesting associations among variables describing the household wealth, 

the socioeconomic status and the ethnic group of the head of the household. 

 

 

2.  Overview of automated learning 
 

A Bayesian network is a directed acyclic graph and a probability distribution.  Nodes in the 

directed acyclic graph represent stochastic variables ),,,(
21 vXXXX L= , and directed 

arcs from parent nodes to a child node represent conditional dependencies. Any conditional 

dependence is quantified by the set of conditional distributions of the child variable given 

the configurations of the parent variables. Marginal and conditional independencies 

encoded by the directed acyclic graph (Lauritzen, 1996), provide the following 

factorisation of the joint probability distribution 

 

∏
=

=

v

i

ijikvkkk xpxxxp
1

21
)|(),,,( πL  

 

Here, ),,,(
21 vkkk xxx L  is a combination of values of the variables in X . For each i , the 

variable iΠ  denotes the parents of iX while ikx and ijπ  denote the events iki xX = , and 

iji π=Π . Particularly, ijπ  is the combination of values of the parent variable iΠ  in the 

event ),,,(
21 vkkk xxxX L= . 

 

The problem we consider next is learning a Bayesian network from data. We can describe 

this as a hypotheses-testing problem.  Suppose we have a set },,,{
21 gMMMM L=  of 
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Bayesian networks, for the discrete random variables ),,,(
21 vXXXX L= . Each 

Bayesian network represents a hypothesis on the dependency structure relating the 

variables. We wish to choose one Bayesian network after observing a sample of data 

},,,{
21 vkkk xxxD L= , for nk ,,1L= .  With )( hMp  denoting the prior probability of 

hM , for each gh ,,1L= , the typical Bayesian solution to the model selection problem 

consists of choosing the network with maximum posterior probability 

 

)

)()|(
)|(

h

hh
h

pM

MpMDp
DMp = . 

 

The quantity )|( hMDp  is the marginal likelihood, and it is computed as follows. Given 

the Bayesian network hM , let 
h

θ  denote the vector parameterising the joint distribution 

of the variables ),,,(
21 vXXXX L= . We denote by )( hp θ  the prior density of 

h
θ . The 

likelihood function is )|( hDp θ and the marginal likelihood is computed by averaging out 

h
θ  from the likelihood function )|( hDp θ . Hence 

 

∫=
hhh

h dpDpMDp θθθ )()|()|(  

 

The computation of the marginal likelihood requires the specification of a parameterisation 

of each model hM , and the elicitation of a prior density for 
h

θ . 

 

In this paper we suppose that the variables ),,,(
21 vXXXX L=  are all discrete, so that 

the parameter vector 
h

θ  consists of the conditional probabilities 

),|( θπθ ijiikiijk
h xXp =Π== . In this framework, it is easy to show that, under the 

assumption of multinomial sampling with complete data, the likelihood function becomes 

 

∏∝
ijk

nhh ijk

ijk
Dp )()|( θθ  

 

where ijkn  is the sample frequency of pairs ),( ijikx π  in the database D . The Hyper-

Dirichlet distribution, which is defined as a set of independent Dirichlet distributions 

),,(
1 iijcijD αα L , one for each set of parameters kijk

h }{θ  associated with the conditional 

distribution ijiX π| , is a numerically convenient choice. It is well known (see Cowell et 

al., 1999), that this choice for the prior distribution provides the following formula for the 

marginal likelihood of the data: 
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Here, ∑= k ijkij nn  is the marginal frequency of ijπ  in the database, and ∑= k ijkij αα . 

 

For consistent model comparisons, we adopt symmetric Hyper-Dirichlet distributions, 

which depend on one hyperparameter α , called global precision. Each hyperparameter 

ijkα  is computed from α  as )/( iiijk cqαα = , where ic  is the number of categories of the 

variable iX , and iq  is the number of categories of the parent variable iΠ . The rationale 

behind this choice is to distribute the overall prior precision α  in a uniform way among 

the parameters associated with different conditional probability tables. In this way, the 

prior probabilities quantifying each network are uniform, and all the prior marginal 

distributions of the network variables are uniform and have the same prior precision. 

 

In principle, given a set of Bayesian networks, with prior probabilities, and a complete data 

set, one can compute their posterior probability distribution and select the network with 

maximum posterior probability. However, as the number of variables in the data set 

increases, the size of the search space makes the task infeasible. Thus some heuristic 

method is required to reduce the dimension of the search space. Fortunately, under some 

particular model prior probabilities, the posterior probability of each model hM  factorises, 

thus allowing local computations. This property can be fully exploited by imposing an 

order over the variables, which transforms model selection into a sequence of locally-

exhaustive searches. We will also describe a greedy search algorithm to reduce the 

complexity of each locally-exhaustive search when the model space is still too large. 

 

The marginal likelihood )|( hMDp  above has a multiplicative form. This fact, together 

with the assumption that the network prior probabilities are decomposable (Heckerman et 

al., 1995), provides a factorisation of each model posterior probability.  A prior probability 

for a network hM is termed decomposable if it admits the factorisation 

 

∏
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hh MpMp
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where )(
i

hMp  is the prior probability of the local network structure that specifies the 

parent set iΠ  for the variable iX . Thus, decomposable priors are elicited by exploiting 

the modularity of a Bayesian network, and are based on the assumption that the prior 

probability of a local structure 
i

hM of a Bayesian network is independent of the other parts 

j

hM . This factorisation of each model prior probability, together with the factorisation of 
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the marginal likelihood, ensures that the posterior probability of the Bayesian network hM  

can be written as 

 

)()|()|()|(
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Thus, the network posterior probabilities are decomposable and, in the comparison of 

models that differ only in the parent sets of a variable iX , only the quantity 
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matters. Thus, for fixed i , the comparison of two local network structures 
i

hM  and 

i

hM
~

specifying different parent sets for iX  can be done by simply evaluating the product 

of the local Bayes factor 
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and the prior odds 
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to compute the posterior odds of 
i

hM  versus 
i

hM
~

. This comparison is independent of any 

other associations among the other 1−i  variables. 

 

Now, the problem is how to exploit this posterior probability decomposability. One 

approach, proposed by Cooper and Herskovitz (see Cooper and Herskovitz, 1992), is to 

restrict the model search to a subset of all possible networks, which are consistent with an 

order relation f on the variables ),,,(
21 vXXXX L= . The order relation f is defined by 

jX  f iX , if iX  cannot be a parent of jX  in any network in M . In other words, rather 

than exploring networks with arcs having all possible directions, this order limits the 

search to a subset of networks in which there are interesting directed associations. 

 

At first glance, the requirement for an order among the variables appears to be a serious 

restriction on the applicability of this search strategy, but we have successfully 

implemented it in other applications. (see Sebastian et al, 2000) From a modelling point of 

view, specifying this order is equivalent to specifying the hypotheses to be tested and some 

careful screening of the variables in the data set may avoid the surprise of selecting a not 
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very sensible model or explore uninteresting associations. In the next section, we will 

consider the problem of selecting an order among the variables in a real application. 

 

This order imposed on the variables, induces a set of ik  possible parents for each variable 

iX , say },,,{
21 iikiii XXXP L= .  One way to proceed, which produces the sequence of 

locally-exhaustive searches, is to implement an independent model selection for each 

variable iX  as follows. For each variable iX , we define 
iM  to be the set of networks 

given by the possible combinations of parents for iX . The set of networks can be 

displayed on a lattice with ik  levels, each level having models in which the associated 

directed acyclic graph specifies k  parents for iX . The first level of the lattice contains the 

model 
i

M
0
 in which iX  does not have parents. The second level contains the ik  models 

i

jM in which ijX  alone is parent of iX  and so on. For each variable iX , the exhaustive 

search consists of evaluating the posterior probability of each model in the lattice so that 

the model with maximum posterior probability   can be identified. The global model is 

then found by linking together the local models for each variable iX . 

 

Although the order among the variables greatly reduces the dimension of the search space, 

this locally-exhaustive search should explore a lattice of ik2  models for each variable iX  

and, for large ik , this may be infeasible. A further reduction is obtained via a greedy 

search strategy, also known as the K2 algorithm, (see Cooper and Herskovitz, 1992). The 

K2 algorithm is a bottom-up strategy, so that simpler models are evaluated first. For each 

variable iX , rather than computing the posterior probability of all networks in the set 
iM , 

the search moves up in the lattice as long as in the level just explored there is at least one 

network with posterior probability higher than the posterior probabilities of the networks in 

the precedent level. The search starts by evaluating the marginal likelihood )|(
iMDp
0
of 

the local network structure 
iM
0
 encoding independence of iX  and the variables in the set 

iP . The next step is the computation of the marginal likelihood )|(
i

jMDp  of the ik  

Bayesian networks 
i

jM , each of which describes the dependence of iX  on the variable 

ijX . If the maximal marginal likelihood )|(
i

jMDp , for some J is greater than 

)|(
iMDp
0
, the parent iJX  is accepted and the search proceeds in the same manner by 

trying to add one of the parents from the set iJi XP \  to the Bayesian network selected. If 

none of the ik  Bayesian networks has a marginal likelihood greater than )|(
iMDp
0
, the 

model 0
iM  is accepted and the search moves to some other variable. Clearly, this heuristic 

search can end up in a local maximum, and one should be aware of this risk, when 

interpreting the model eventually selected. Other search strategies have been proposed to 

address this problem (see Cowell et al., 1999, and references therein). 
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3.  Analysis 
 

In this section, we analyse a data set extracted from the British general household 

survey (2), which was conducted between April 1996 and March 1997 by the Social Survey 

Division of the Office of National Statistics in the United Kingdom. This annual, multi-

purpose survey is based on a sample of around 10 000 private households in Great Britain. 

Interviews are conducted with everyone aged over 16 in the household (around 18 000 

adults). The data set we consider comprises 9 033 British households, which, following the 

definition introduced since 1981, consist of as a single person or of a group of people who 

have the address as their only or main residence and who share either one meal a day or the 

living accommodation.  

 

In order to show the potential usefulness of our methodology, we selected 13 variables 

describing the British households in terms of composition (variables Ad_fems, Ad_males, 

Children, Hoh_age, Hoh_gend), regions of the United Kingdom (variable Region), one 

ethnicity indicator (variable Hoh_origin), one mobility indicator (variable Hoh_reslen) and 

economic indicators of the household (variables Accom, Bedrms, Ncars, Hoh_status, 

Tenure). A complete description of these variables and their states are summarised in 

Table 1. This group of variables was fully observed in the data set extracted from the 

survey. 

 

The modelling of the data was carried out with the program Bayesware Discoverer, which 

implements the model search approach described in the previous section. 

 

Table 1: Description of the variables extracted from the 1996 general household 

survey 

 

 

Variable Description State description 

Region Region of birth of the Hoh England, Scotland and Wales 

Ad_fems Number of adult females 0, 1, ≥ 2 

Ad_males Number of adult males 0, 1, ≥ 2 

Children Number of children 0, 1, 2, 3, ≥ 4 

Hoh_age Age of  the Hoh    17-36; 36-50; 50-66; 66-98 (years) 

Hoh_gend Gender of  the Hoh Male, Female 

Hoh_origin Ethnic group of the Hoh  Cauc., Black, Chin., Indian, Other 

Hoh_reslen Length of residence 0-3; 3-9; 9-19; ≥ 19 (months)  

Hoh_status Status of Hoh Active, Inactive, Retired  

Accom Type of accommodation Room, Flat, House, Other 

Bedrms Number of bedrooms 1, 2, 3, ≥ 4 

Tenure House status Rent, Owned, Social-Sector 

Ncars Number of cars 1, 2, 3, ≥ 4 

 

                   
(2) Crown Copyright 1996. Used by permission of the British Office for National Statistics. 
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NB: Hoh denotes the head of the household — numbers of adult males, females and 

children refer to the household. 

 

The approach to model selection described in the previous section requires the variables to 

be discrete. Therefore, the first step of the analysis was to discretise the continuous 

variables into four bins of approximately equal proportions. Before this step, variables 

having a skewed distribution were transformed in a logarithmic scale. Many integer-valued 

variables — as those indicating the number of adult males or females in the household — 

were appropriately recoded and States observed with low frequency were grouped into a 

unique state. We then choose the following order among the variables to limit the space of 

models to be explored. 

 

Region f Hoh_origin f  Hoh_gend f  Ad_fems f Ad_mal f  Hoh_age f 

Hoh_status fChildren f  Tenure f Hoh_reslen f Accomod f Bedrms f Ncars. 

 

The choice was based on the following considerations.  Geographic variables precede 

household variables and thus we are interested in conditioning on them first (e.g. see 

Thomas, et al., 1998).  The ordering of some of the household demographic variables (e.g. 

Hoh_origin, Hoh_gend, Ad_fems, Ad_males, Hoh_age) and we chose the particular 

ordering for convenience.  These variables are commonly thought of as explaining house 

wealth which is described by the variables Hoh_status, Children, Tenure, Hoh_reslen, 

Accomod, Bedrms, Ncars, while dependencies in which the age of the household head are 

directed influenced by any of these variables do not seem to be interesting. The remaining 

order was chosen in a similar way, on the basis of possible cause-effect relationships 

between the remaining variables. 

 

We used this order to build four models, using the K2 algorithm, uniform prior 

probabilities on the possible networks, and symmetric Hyper-Dirichlet prior distributions 

for the model parameters. We chose four values for the global precision α =1, 5, 10, 20 to 

evaluate the effect of changing the global prior precision on the model selected. The 

evaluation was carried out by comparing the networks topologies, and their different 

predictive capabilities. This last aspect was evaluated by computing the classification 

accuracy of the four networks. Full details of the analysis are in Sebastiani and Ramoni 

(see Sebastiani and Ramoni, 2001) and led to select the network learned with α =5. This 

network is depicted in Figure 1 and is described in the next section. 
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Figure 1: The Bayesian network selected from the data when the global prior 

precision αααα is 5 

 

 

4.  Results and discussion 
 

The network in Figure 1 shows important, directed dependencies and conditional 

independencies. The dependency of the ethnic group of heads of the households on the 

variable Region reveals a more cosmopolitan society in England than Wales and Scotland, 

with a larger proportion of Blacks and Indians as head of households. The variables 

describing the ethnic group of the head of the household, of the gender of the head of the 

household, and the number of adult females in the household, separate Region from most 

of variables describing household wealth. 

 

The working status of the head of the household (variable Hoh_status) is independent of 

the ethnic group given the gender and age of the head of the household. The estimated 

conditional probability table shows that when a young female is head of a household, she 

is much more likely to be inactive than a young male (40 % compared to 6 % when the age 
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group is 17–36). This difference attenuates as the age of the head of the household 

increases. The conditional distribution quantifying the dependency of the gender of the 

head of the household on the ethnic group reveals that Blacks have the smallest probability 

of having a male head of the household (64 %) while Indians have the largest probability 

(89 %). 

 

The age of the head of the household depends directly on the number of adult males and 

females, and shows that households with no females and two or more males are more 

likely to be headed by a young male while, on the other hand, households with no males 

and two or more females are headed by a mid age female. There appear to be more single 

households headed by an elder female than an elder male. Furthermore, the composition of 

the household changes in the ethnic groups: the most interesting fact is that Indians have 

the smallest probability of living in a household with no adult males (10 %), while Blacks 

have the largest probability (32 %). 

 

The tenure status of the accommodation depends directly on the age, gender and status of 

the household head. On average, the largest proportion of British households is established 

in owned accommodations (75 %), when the age of the head of the household is between 

36 and 66 years. Younger heads of household have a larger chance of living in rented 

accommodations (20 %), while senior heads of household have a larger chance of living in 

accommodations provided by the social service (32 %). These figures however change 

dramatically when the gender of the head of the household is taken into account. When the 

head of the household is a young female, the probability that the household is in an owned 

accommodation is 27 %, against 65 % when the household head is a young male. This 

probability rises up to 52 % when the household head is an elder female compared to 69 % 

for elder males. Households are more likely to be in an accommodation provided by the 

social service when the head is an inactive female rather than an inactive male. 

 

The number of bedrooms is directly affected by the number of children in the household, 

the type of accommodation and its tenure status. Households with two or more children are 

more likely to be in three bedroom flats or houses, but the accommodations provided by 

the social service are slightly smaller than those rented or owned by the head of the 

household.  Houses are more likely to have a larger number of bedrooms than flats: the 

most likely number of bedrooms of an owned house is three, compared to one in a flat. 

Interestingly, flats provided by the social sector are more likely to be one-bed flats, while 

rented and owned flats are most likely to be two-beds flats.  The length of residence is 

directly dependent on the age of the head of the household and the tenure status of the 

accommodation and shows that the length of residence in rented accommodations or those 

provided by the social service is shorter than that in owned accommodations. 
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Figure 2: An example of query with the Bayesian network induced from the data 

 

By querying the network, one may investigate other undirected associations and discover 

that, for example, the typical Caucasian mid family with two children has 77 % chances of 

being headed by a male who, with probability .57, is aged between 36 and 50 years. The 

probability that the head of the household is active is .84, and the probability that the 

household is in an owned house is .66. Results of these queries are displayed in Figure 2. 

 

These figures are slightly different if the head of the household is, for example, Black. In 

this case, the probability that the head of the household is male (given that there are two 

children in the household) is only .62 and the probability that he is active is .79. If the head 

of the household is Indian, then the probability that he is male is .90 and the probability 

that he is active is .88. On average, the ethnic group changes slightly the probability of the 

household being in an accommodation provided by the social service (26 % for Blacks, 

23 % for Chinese, 20 % Indians and 24 % Caucasians). Similarly, black heads of 

household are more likely to be inactive than heads of household from different ethnic 

groups (16 % Blacks, 10 % Indians, 14 % Caucasians and Chinese), and to be living in a 

less wealthy household, as shown by the larger probability of living in accommodations 
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with a smaller number of bedrooms and of having a smaller number of cars. Households 

headed by Blacks are less affluent than others, if the gender of the head of the household is 

not taken into account. However, the dependency structure shows that the gender of the 

head of the household and the number of adult females make all the other variables 

independent of the ethnic group. Thus, the model extracted suggests that differences in the 

household wealth are more likely caused by the different household composition, and in 

particular by the gender of the head of the household, rather than racial issues. 

 

The robustness of many of these interpretations can be examined by careful alteration of 

the ordering of the variables and the structuring of the greedy search algorithm. 

 

 

5.  Conclusions 
 

In this analysis, we focused on networks learned by using uniform model priors and sets of 

independent, symmetric Dirichlet distributions as prior distribution for each model 

parameters. The advantage of using these prior distributions is that they can be elicited 

simply by assigning the global prior precision and this choice produces consistent model 

comparisons. However, symmetric Dirichlet distributions are known to be too invariant, 

(see Forster and Smith, 1998), so that they model different dependency structures in the 

same way. One may wish to use a class of model parameter priors which encodes different 

prior information. An interesting challenge is to devise a class of prior distributions which 

maintains the consistency of model comparisons, feasibility of computations, and provides 

the user with more modelling freedom. 

 

The analysis here was carried out by discretising all continuous variables, thus raising the 

issue of the effect of the discretisation. We are currently working on the implementation of 

a more general learning algorithm, which selects networks from data sets with both 

continuous and discrete variables. 

 

One further issue is related to the publications of the results found with the method 

described here. A Bayesian network is not just the directed acyclic graph displaying the 

dependency structure selected, conditional on the data. It is also a probability distribution, 

and as such, the best way to publish the results is to give the entire network, and to let 

users make their own queries. Given the increasing importance that the world wide web is 

assuming  nowadays as a communication system, publication of the network over the 

WWW offers a simple way to display results without giving direct access to the original 

data, thus preserving data confidentiality. 
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Abstract 
 

Diet has been linked to many health outcomes including breast cancer (Willett et al., 1992) and age-

related maculopathy (ARM), a degenerative eye disease that may produce blindness. However, such 

relationships can be difficult to establish since the dietary quantity of interest, the usual intake of a 

nutrient, is unobservable in practice. The observable daily intake of a nutrient measures the usual 

intake with a large error. Furthermore, the distribution of this error is typically heterogeneous 

across individuals. In this paper, we present an approach to estimate the posterior distribution of 

individual-level usual intakes of a nutrient while accounting for heterogeneous measurement error 

in the intake of the nutrient. We then integrate over this distribution to obtain the posterior 

distribution of the regression coefficient associated with nutrient intake in a logistic regression 

model, adjusting for other risk factors. We illustrate the methods using dietary intake and ARM 

incidence data collected in the third national health and nutrition examination survey (NHANES 

III). 

 

 

1.  Introduction 
 

The link between diet and certain health outcomes has been established (e.g. IOM, 2000). 

Investigators and practitioners alike agree that, most often, it is the chronic or long-term 

effect of diet on health that is of interest (NRC, 1986; Willet et al., 1992; Owusu et al., 

1997). For example, it is not important if an individual’s intake of vitamin C is very low on 

one day; what has been associated with poor health is the low habitual intake of vitamin C 

(e.g. NRC, 1986; Nusser et al., 1996). Let ijY  denote the intake of the nutrient by 

individual i, ni ,...,1=  on day j, inj ,...,1=  and let iw denote the usual nutrient intake by 

individual i. We define usual intake as the individual’s long-run average intake of the 

nutrient, i.e. 

 

},|{ iYEw iji =  

 

 

where the expectation is conditional on the individual. A simple additive measurement 

error model to represent the association between daily and usual intake for an individual 

was proposed by the NRC (1986). If ije is the measurement error associated with the ith  
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individual on the jth day, we get 

 ijiij ewY += , (1) 

 

where ),0(~),,(~ 2

,

2

ieijwwi ew σσµ and 0),( =iji ewCov . Estimating the parameters in 

model (1) is not a straightforward matter; the error variances are heterogeneous across 

individuals, and the distributions of observed intakes ijY are typically very skewed, 

suggesting that the distributions of the unobservable usual intakes iw  may also be skewed. 

Given the definition for iw  above, an unbiased estimate of iw  is iY the mean of in days of 

observed daily intake for the individual. For large enough ii Yn ,  is a reliable estimator of 

iw , as iY converges in distribution to iw . Unfortunately, collecting dietary intake data is 

costly and fraught with errors. Several researchers have pointed to a strong time-in-sample 

effect, where individuals tend to under-report intake the longer they have been in the 

sample. Therefore, nationwide food consumption surveys such as the continuing survey of 

food intakes by individuals (CSFII; e.g. USDA, 1996) or the national health and nutrition 

examination survey (NHANES III; CDC, 1994) collect only one or two days of intake data 

for each individual in the sample. For those nutrients that are not widely available in the 

food supply, such as most antioxidants, the within-individual variance in intakes is 

significantly larger than the between-individual variance in the population (e.g. Sempos et 

al., 1985; Nusser et al., 1996; Carriquiry, 1999). 

 

In this paper, we address the problem of estimating the regression coefficient associated 

with usual intake of a nutrient when incidence of age-related maculopathy (ARM) is the 

categorical response. ARM is a degenerative eye disease that may lead to blindness. 

Presence of the disease is modelled as a function of the usual intake of a nutrient and of a 

vector of other covariates ia measured for the ith individual in the sample. We first 

describe an approach for approximating the marginal posterior distributions, )|( Yii wπ , 

of usual intake for each individual in the sample. Given these marginal posterior 

distributions, we then propose a method for incorporating uncertainty about the wi when 

fitting a model );a,w(f)ARMPr( β= . We illustrate the method by applying it to data 

collected in NHANES III (CDC, 1994). 

 

The paper is organised as follows. In Section 2, we describe the intake and health outcome 

data collected in NHANES III. The model and estimation of model parameters are 

discussed in Section 3. The application of the methods described is shown in Section 4. We 

conclude with brief comments and suggestions for future work in Section 5. 
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2.  Intake and health outcome data 
 

The United States has been conducting nationwide food consumption surveys since 1936. 

Currently, the two major food intake surveys are the CSFII, administered by the US 

Department of Agriculture, and the NHANES, which is conducted by the National Centre 

for Health Statistics of the Centres for Disease Control and Prevention. The latest CDC 

survey is NHANES III, which was in the field from 1988 to 1994. Both surveys obtain 

information on socio-demographic variables and food intake for all sampled individuals. In 

addition, the NHANES also collects extensive information on health status and outcomes. 

 

The survey instrument used to collect food intake data is called a 24-hour recall form, and, 

as the name suggests, respondents are asked to recall what they ate during the past 24 

hours. In the NHANES, a complete medical examination (including medical history, X-

rays, and blood tests) is carried out as well. The total sample size in NHANES III is 

approximately 30 000 individuals. Low-income individuals, African-Americans and 

Hispanics were oversampled, so post-survey weights are available to ‘correct’ inferences 

to the general population. Overall, only about 5 % of respondents in NHANES III were 

asked to provide a second day of intake data. Thus, information for estimating the usual 

intake of nutrients is scarce. 

 

We used information on food intake, socio-demographic factors, and ARM incidence for 

males, aged 50 years of age or older, collected in NHANES III. We focus on estimating the 

relationship between usual intake of vitamin C and the incidence of ARM. 

 

Daily food intakes were collected for 1 933 males aged 50 years and older. Food intakes 

were converted into nutrient intakes using ‘maps’ from the food conversion databases 

constructed and maintained by the US Department of Agriculture. We considered only 

nutrient intakes from food sources; since over 30 % of the US population consume at least 

one dietary supplement, the nutrient intakes we used for our analyses are very likely to 

underestimate the actual nutrient intakes by individuals in the sample. 

 

The presence of early or late ARM was measured on all individuals in the sample, using 

gradable retinal fundus photography as the diagnostic tool. A standard protocol (see, for 

example, Goldberg et al., 1988) was then used to classify individuals into one of three 

categories: no ARM, early ARM, and late ARM. The protocol requires investigation of the 

following factors: presence of any drusen, retinal pigment epithelial depigmentation, 

retinal pigmentation, geographic atrophy, and signs of exudative macular degeneration. For 

the purpose of our analyses, we aggregated the early ARM and late ARM categories into 

one, and considered a bivariate response variable with two levels: healthy individuals and 

individuals affected with ARM. Of the 1 933 men with complete dietary intake 

information, 1 833 had complete covariate information (smoking, ethnic group, eye colour) 

and reliable ARM diagnosis. The healthy individuals numbered 1 544, and those diagnosed 

with ARM numbered 279. 
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A partial description of the data used for analysis is given in Table 1. In the table, we 

present the proportion of individuals afflicted with ARM in the presence and absence of 

factors known to increase the chance of suffering from ARM: blue-eyes, smoking, and 

Caucasian ethnic group. We also show, for healthy and ARM patients, the observed mean 

daily intake of vitamin C (in mg) and the standard error of the mean. 

 

Table 1: The upper portion of the table shows the proportion of men diagnosed with 

ARM in the presence (Yes) or absence (No) of risk factors — The lower 

table gives the mean and the standard error (SE) of the mean of continuous 

risk factors in ARM patients and in healthy individuals 

 

 

 

The distribution of observed vitamin C intakes among the 1 933 men in the sample is 

skewed, with a long tail to the right. Furthermore, the within-individual standard deviations 

in vitamin C intake are positively associated with individual mean intakes; the more the 

individual consumes of the nutrient, the more variable the intake of the nutrient from one 

day to the next. 

 

Because of the small number of individuals in the sample for whom a replicate day of 

intake data was collected, we decided to use informative prior distributions for some of the 

parameters in the model described in the next section. The informative prior distributions 

we constructed were based on a similar nationwide food consumption survey, the 1994–96 

CSFII, administered by the US Department of Agriculture. The CSFII survey uses a survey 

instrument that is similar to the one used in NHANES III. The surveys are not strictly 

comparable, however, as in CSFII some of the 24-hour recalls are administered by 

telephone. Furthermore, the design of the samples are different, and the demographic 

groups that are targeted by each survey are also different. CSFII however, collects two 

days of intake data for each individual in the sample. Clearly, this sample information can 

be incorporated into the NHANES III analysis via appropriate prior distributions, to 

supplement the reduced information about the measurement error variance. We discuss the 

choice of informative prior distributions in more detail in Subsection 3.3. 

 

 Yes No 

Blue eyes 86/525=16 % 193/1 308=15 % 

Smoking 246/1 582=16 % 47/351=13 % 

White (race) 199/1 100=18 % 94/833=11 % 

   

 Mean (SE), ARM patients Mean (se), healthy individuals 

Age 74 (0.49) 70 (0.18) 

Vitamin C 91 (4.3) 92 (2.2) 
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3.  Model and estimation of model parameters 
 

3.1.  Logistic regression model 

 

Let niDi ,...,1, = , be a binary disease indicator for the ith individual, and let iw be a 

dietary risk factor. Further, let ia be a vector of other risk factors. We write 

 

),(~,| iiii pBernoulliwD a  

 

where 
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}exp{1
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Here, L,...,2l,a l,i = is the value of the lth covariate measured on the ith individual, and 

0β  is the usual regression intercept. We are interested in the estimation of 1β . 

 

Assume that we have measured ia without error, but that iw is measured with error. It is 

well known (e.g. Carroll et al., 1984; Rosner et al., 1992) that if the measurement error of 

iw  is not adjusted for, the estimate of iw will be attenuated, that is, |ˆ| 1β will be too small. 

We propose a Bayesian approach for the estimation of 1β that takes into account the 

uncertainty about the value of the usual intake w. Throughout, we choose a flat prior 

distribution for β . In Section 3.2, we describe an approach to estimate the posterior 

distribution )|w( ii Yπ , of the true usual intake iw for the ith individual. We are 

ultimately interested in )Yπ(β|α,D, , the marginal posterior distribution of the vector of 

parameters β , so we will need to evaluate the integral in expression (2) once 

the )|w( ii Yπ  are available. An expression for the posterior distribution of interest is 

 

 ( ) ( ) .Y|)a,,|(Y,a,|
i iiiii

i

dwwwDD πβπβπ ∫∏∝  (2) 

We proceed in two steps. We first develop an approach to approximate the individual 

marginal posterior distributions of usual nutrient intake )|w( ii Yπ  (as described in 

Section 3.2). We then implement a Monte Carlo integration algorithm to evaluate (2) (see 

Section 3.3). 



M. J. Daniels and A. L. Carriquiry  Computing the posterior distribution of individual-level usual intakes with … 

 72 

3.2.  Estimating individual posterior distributions of usual intake 

 

The method we use is similar to the one given in Daniels and Carriquiry (1999). In general, 

daily intakes ijY are not normally distributed. Thus, we transform the ijY into normal random 

variables, ijX . So that this transformation is flexible enough to accommodate any dietary 

component, we developed a semi-parametric transformation approach that is carried out in 

two steps. In the first step, the best (in the minimum mean squared error sense) power 

transformation γ  to the normal scale is estimated. In the second step, we fit a natural cubic 

spline to map power-transformed intake observations into the normal space. Consider the 

pairs ( )ijij z,Y γ
, where the ijz are the corresponding normal scores. The model we postulate 

is 

 

 ,tzY ijp3p

k

1p

p

ijp

3

1p0ij εαααγ
+∑+∑+=

+==
 (3) 

 

where ( )
pij rz

3

pijp Irzt
≥

−= and the ijε are normal random variables with mean 0. The 

number of join points k, the location of the join points k21 r,,r,r K and the parameters 

( )4k10 ,,,
+

ααα K are unknown. Because the 
γ

ijY are sample quantiles, the residuals ijε are 

not independent. We specify the variance of the residuals to be proportional to the 

asymptotic covariance matrix of the sample quantiles, 
γ

ijY , V (for the specific form of V, 

see Schervish, 1996, p. 404-410); i.e., ( ) VVar 2σε = . We let  ( ) ijij XYg = denote the 

transformation function. 

 

To fit the cubic spline to our data, we proceed in a Bayesian fashion and use the approach 

of Denison et al. (1998). A reversible jump MCMC sampler (Green, 1995) was 

implemented for computations. To facilitate the computations, we diagonalise V. Daniels 

and Carriquiry (1999) demonstrate that this has little effect on the posterior distribution of 

usual intakes. From the sequence of transformations thus generated, we draw a sample of 

size 1m  of transformation functions. We then create 1m  samples of size i

n

i nN
1=

∑=  each 

from the original non-normal observations. For more details on the transformation model 

and its implementation, see Daniels and Carriquiry (1999). 

 

For each transformed sample, we formulate a hierarchical measurement error model with 

three levels. In level 1, the individual’s transformed daily intake, ijX is modelled as a 

normally distributed random variable with mean equal to ix , the usual intake of the nutrient 

for subject i , and with a subject-specific measurement error variance: 

 

( ).,xN~,x|X 2

uii

2

uiiij σσ  
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In level 2, we model the heterogeneity in the usual intakes and in the measurement error 

variances across individuals: 

 

),,(~,| 22

xxxxi Nx σµσµ  

 

 ( ) ( )( ).,logN~,|log 2

AA

2

AA

2

ui σµσµσ  (4) 

 

Finally, in level 3 we place flat priors on the hyper-parameters ( )2xx ,σµ .  Since the sample 

contains little information about the subject-specific measurement error variances, 
2

uiσ , we 

construct informative priors for the hyperparameters ( )2AA ,σµ . Details are given in the 

next section. 

Draws of all parameters in the model can be generated using a Gibbs sampler with a 

Metropolis step for sampling values of the measurement error variances. For each of the 

1
m  samples of transformed daily intakes, we generate 2m draws 

}{ 2

AA

2

xx

2

un

2

1un1 ,,,,,,x,,x σµσµσσ KK . 

 

For any of the 1m samples, the ix  in level 2 of the measurement error model represent the 

true individual usual intakes in the transformed scale. The final step back-transforms the 

ix draws into the original scale. We denote the back-transformed values as iw , and by 

definition, 

 

 } {{ ( ) },xx|uxgExx|YEw k

1

k =+===
−

 (5) 

 

where the subscript k indexes the kth draw of x from its marginal posterior distribution and 

u is the measurement error. To approximate the expectation in (5), we generate, for each 

draw }{ 2

2

uikik m,,1k,,x K=σ , a large number q of measurement errors iju from their 

distribution ( )2

uik,0N σ , and then compute the Monte Carlo mean. The backtransformed 

iw (one for each individual in each of the 21 mm ×  replicates) is a draw from the posterior 

distribution of the usual intake for individual ( )Y|, ii wi π . Thus, using this procedure, we 

obtain a sample from the posterior distribution of usual intake for each subject in the 

sample. 

 

Once we have obtained a sample from the posterior distribution of usual intakes for the 

subjects in the study, as detailed above, we sample from the posterior distribution 

( )Y,,a| Dβπ by numerically evaluating the integral given in expression (2). Specifically, 

for each draw from ( )Y|ii wπ , we generate S draws from the conditional posterior 

distribution of β  (conditional on iw ), using a random walk Metropolis-Hastings 

algorithm with a multivariate normal candidate distribution with mean 0 and covariance 
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matrix proportional to the inverse of the observed information matrix for the maximum 

likelihood estimator of β , conditional on the current sample from the posterior 

distribution of iw . 

 

3.3.  Construction of informative prior distributions 

 

About 8 % of males aged 50 and older in NHANES III were asked to provide a second day 

of dietary intake information. Clearly, the sample information about the parameters of the 

measurement error distribution is very sparse. As a result, we specified informative prior 

distributions for the parameters of the within individual measurement error distribution, 

Aµ and 
2

Aσ . To do so, we use nutrient intake data collected in a similar nationwide food 

consumption survey, the CSFII 1994–96, which included two observations of each of the 

nutrient intake of 1 636 males 50 years of age and older. 

 

To derive values for the hyperparameters from the CSFII data, we applied the methods in 

this paper to the CSFII data using non-informative priors wherever possible, and obtained 

the posterior distributions of the measurement error model parameters. We used these 

estimated posterior distributions to specify the hyperparameters Aµ and 
2

Aσ  in level 3 of 

model (4). For simplicity, we chose conjugate priors: ( )Alog µ was a priori normally 

distributed, and 
2

A/1 σ was distributed as a gamma random variable. For the former, the 

values of the parameters were obtained by matching the moments of the prior to the 

posterior distribution of ( )Alog µ from the CSFII data. For the latter, we parameterised the 

Gamma distribution as ( )δδ ,mG  where the first moment, m, was matched to the posterior 

mean obtained from the CSFII data for 
2

A/1 σ . The parameter δ  can be thought of a 

’sample size’ that reflects our confidence in the value chosen for m. 

 

 

4.  Results 
 

We applied the methodology presented above to the data described in Section 2. The 

posterior distributions of usual intake for six individuals in our sample are given in Figure 

1; note that the posterior distributions of the usual intakes for different individuals are 

highly variable. For example, the individual in the upper left panel has a low usual intake 

of vitamin C, and there is considerable uncertainty about the usual intake of the individual 

shown in the upper middle panel. 
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Figure 1: Marginal posterior distribution of the usual intake for six subjects 

 

Table 2 shows the mean and the standard deviation of the posterior distribution of the 

regression coefficients associated with risk factors other than diet. A 95 % credible interval 

is also shown. Note that individuals are more likely to develop ARM when they are older, 

smoke, are Caucasian, and have blue eyes, as expected. The association between smoking 

and ARM incidence is not strong in this data set, however. This may be due to 

measurement error in the recording of smoking status. 

 

Table 2: Posterior means, standard deviations, and 95 % credible intervals of the 

regression coefficients associated with covariates other than vitamin C 

intake 

 

 Mean (standard deviation) 95 % credible interval 

Intercept 7.10 (.76) (5.6, 8.6) 

Age .069 (.009) (.052,.088) 

Smoking .15 (.19) (-.24,.52) 

Race (white) .43 (.16) (.11,.75) 

Eye colour (blue) .28 (.16) 

 

(-.04,.59) 
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We estimated 1β using the approach we propose and also two other alternatives. The two 

alternative methods are the following: 

 

- Instead of integrating out iw as in (2), plug in the observed mean intake for each 

individual. The observed mean intake measures usual intake with error. The 

approximation to the posterior distribution of β  is then proportional to 

( )iii YD ,a,|
i

βπ∏ . 

 

- Instead of the observed mean intake, we plugged in the posterior mean of the 

distribution ( )Y|ii wπ . In this case, the approximation to the posterior 

distribution of β  was proportional to [ ]( )Y|,a,|
iiii
wED βπ∏ . 

 

Estimates of the mean and the standard deviation of the marginal posterior distribution of 

1β , the regression coefficient associated with vitamin C intake, are given in Table 3 for 

each of three estimation approaches. The corresponding 95 % credible sets are listed as 

well. 

 

Table 3: Posterior means, standard deviations, and 95 % credible intervals for 

10001 ×β , using three different approaches 

 

Method  Mean (standard 

deviation) 

95 % credible 

interval 

Plug in Y  .00 (.80) (-1.5, 1.6) 

Plug in ( )Y|iwE  -.53 (1.6) (-3.6, 2.6) 

Average over 

( )Y|iwπ  

-.19 (1.3) (-2.3, 2.5) 

 

 

We did not detect a significant association between vitamin C intake and incidence of 

ARM. In all three approaches, the regression coefficient 1β was not significantly different 

from zero. As expected, however, less attenuation of 1β , and thus larger estimated effects, 

was observed for the approaches that adjusted for measurement error. 

 

The negative sign of the regression coefficient associated with vitamin C intake was 

unexpected. Further exploration of the data, however, revealed that vitamin C intake 

appears to be higher in those individuals diagnosed with late ARM than in those diagnosed 

with early ARM. This suggests that a serious confounding effect is operating; individuals 

diagnosed with ARM prior to the time of examination in NHANES III seem to have 

changed their diet as a response to the diagnosis. 
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To assess how much information about the within-individual measurement error 

parameters was available in the NHANES sample, we compared the prior and posterior 

distributions of the measurement error parameters ( )Aµlog  and 
2

A/1 σ . The prior 

distribution and the sample-updated posterior distribution of ( )Aµlog  were rather similar 

(see Figure 2), indicating that the sample did not contribute much information about the 

value of the central moment of ( )2uilog σ . The prior and posterior mean of 
2

A/1 σ were 

essentially the same, but the posterior variance was larger than the prior variance. 

 

 

Figure 2: Prior and posterior for 
( )Aµlog

 — the dotted line denotes the prior 

distribution and the solid line the posterior distribution 

 

 

5. Discussion 
 

We have proposed an approach for estimating individual posterior distributions of usual 

intake of a dietary component that may be measured with heterogeneous (across 

individuals) error. If the nutrient in question is a dietary risk factor for the onset of a 

disease, then values of usual intake of the component for each individual can be sampled 

from the posterior distribution and used as regressors in a logistic (or ordinary) regression 

model. We intend to further explore the sensitivity of inferences on β  to varying 

specifications of informative prior distributions on the measurement error parameters. We 

also plan to conduct simulation studies to assess the performance of the proposed approach 
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under correct and incorrect assumptions about the measurement error distribution. A recent 

paper by DiMatteo et al. (2000) addresses several problems with the Denison et al. (1998) 

approach to curve fitting; we are currently implementing such modifications (although we 

believe that they will have little impact on our ultimate inferences). 

 

Clearly, intakes of more than one nutrient typically need to be considered in association 

with disease. We are currently working on extending the methodology to allow for 

multiple covariates measured with error. This will involve approximating multivariate 

distributions of usual intakes, since intakes of different nutrients are typically correlated. 

 

Finally, given the characteristics of dietary survey data, we realise that a naive regression 

model like the one we have formulated cannot capture the effect of some serious potential 

confounders. For example, individuals that are classified during the NHANES III 

examination as suffering from late ARM, may have been initially diagnosed with the 

disease years before, and may have changed their diet as a result of the diagnosis. That 

may explain the incorrect sign we obtained for the regression coefficient associated with 

vitamin C intakes. 
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Abstract 
 

We estimate semi-parametric regression models of chronic undernutrition (stunting) using the 1992 

demographic and health surveys (DHS) from Tanzania and Zambia.  We focus particularly on the 

influence of the child’s age, the mother’s body mass index, and spatial influences on chronic 

undernutrition. Conventional parametric regression models are not flexible enough to cope with 

possibly non-linear effects of the continuous covariates and cannot flexibly model spatial influences.  

We present a Bayesian semi-parametric analysis of the effects of these two covariates on chronic 

undernutrition.  Moreover, we investigate spatial determinants of undernutrition in these two 

countries. Compared to previous work with a simple fixed effects approach for the influence of 

provinces, we model small-scale district specific effects using flexible spatial priors. Inference is 

fully Bayesian and uses recent Markov chain Monte Carlo techniques.  

 

 

1.  Introduction 
 

Acute and chronic undernutrition is considered to be one of the worst health problems in 

developing countries.  As one of the most important indicators of deprivation, 

undernutrition is of intrinsic concern to policy-makers.  In addition, it is also associated 

with other important development outcomes such as high mortality and poor labour 

productivity (Sen, 1999; Unicef, 1998).  In fact, some estimates claim that undernutrition 

is implicated in over 50 % of deaths in developing countries (Unicef, 1998). 

 

Undernutrition among children is usually determined by assessing the anthropometric 

status of the child relative to a reference standard.  Researchers distinguish between three 

types of undernutrition: wasting or insufficient weight for height indicating acute 

undernutrition; stunting or insufficient height for age indicating chronic undernutrition; 

and underweight or insufficient weight for age which could be a result of either.  Wasting, 

stunting, and underweight for a child i are typically determined using a Z-score which is 

defined as: 
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where AI refers to the individual’s anthropometric indicator (e.g. height at a certain age), 

MAI refers to the median of the reference population, and σ refers to the standard deviation 

of the reference population.  The reference standard typically used for the calculation is the 

NCHS-CDC growth standard that has been recommended for international use by WHO 

(WHO, 1983, 1995).  

 

Important determinants of undernutrition include the education, income, and nutritional 

situation of the parents, access to clean water and sanitation, and primary healthcare, and 

immunisation facilities (Unicef, 1998; Klasen, 1999; Nyovani et al., 1999).  Some of these 

influences are likely to have non-linear effects on undernutrition.  In particular, the impact 

of the nutritional situation of the parents, measured using the body mass index (BMI, 

defined as the weight in kilograms divided by the square of height in metres) on the child’s 

nutritional status is presumed to follow an inverse U-shape.  Parents who exhibit a very 

low BMI, indicating their poor nourishment, are likely to have poorly nourished children.  

At the same time, parents with a very high BMI might also have poorly nourished children 

as the obesity associated with their high BMI indicates poor quality of nutrition and might 

therefore indicate poor quality of nutrition for their children. 

 

Moreover, the development of undernutrition typically follows a pattern that is closely 

related to the age of the child.  While some children are already born undernourished due 

to growth retardation in utero, the anthropometric status of children worsens considerably 

only after four to six months, when children are weaned and solid foods are introduced 

(WHO, 1995; Stephenson, 1999).  This is due to the influence of poor quality nutrition that 

is replacing breast milk as well as the onset of infectious diseases.  These diseases are often 

related to unclean water and food which is replacing the breast milk, and the child no 

longer profits from the mother’s antibodies that were transmitted through the breast milk 

(Stephenson, 1999). Initially, the worsening anthropometric status shows up as acute 

undernutrition. But then stunting develops and worsens until about the age of two to three.  

At that time, the body has, through reduced growth, adjusted to reduced nutritional intake 

and now needs relatively fewer nutrients to maintain this smaller stature.  In addition, the 

body has developed its immune system to fight the impact of infectious diseases more 

effectively (WHO, 1995; Moradi and Klasen, 2000). 

 

Even after controlling for the impact from these well-known correlates, researchers have 

found important spatial differences in indicators such as undernutrition, or mortality in 

many developing countries (World Bank, 1995).  They may be related to left-out variables 

that have a distinct spatial pattern.  Obvious examples of such variables are the disease 

environment in certain areas, the climate which may affect the quality of nutrition and the 

persistence of illness, access to important infrastructure (such as health centres, major 

roads or railroads), regional economic opportunities and constraints, etc. (Gallup and 

Sachs, 1998).  To the extent that undernutrition is directly affected by the presence or 

absence of infectious diseases, such spatial patterns may also capture the spatial 

distribution of certain infectious epidemics. 

 

In this paper, we model the determinants of stunting (i.e. chronic undernutrition) in Zambia 

and Tanzania.  Stunting rates are high in both countries.  Overall, 42 % of Zambian 
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children under age five are classified as stunted (Z score less than minus 2) and 18 % as 

severely stunted (Z score less than minus 3). In Tanzania, some 43 % of children under 

five are classified as stunted and 18 % are severely stunted (Somerfelt and Stewart, 1994). 

 

A particular focus of our analysis is the use of a flexible approach to model the impact of 

the child’s age and the mother’s BMI on undernutrition as well as consider spatial effects 

with the help of a semi-parametric Bayesian modelling approach developed by Fahrmeir 

and Lang (2001a,b) and Lang and Brezger (2001).  In a related paper (Kandala et al., 

2001), spatial effects have been included by using simple fixed effects for provinces.  In 

the current paper spatial random effects models are used to determine small-scale regional 

(district-specific) effects. The results give refined insight into spatial effects on 

undernutrition. Inference is fully Bayesian and uses recent Markov chain Monte Carlo 

(MCMC) techniques. 

 

 

2.  Semi-parametric Bayesian regression models 
 

2.1.  Observation model 

 

Consider the regression situation, where observations   (yi,xi,wi), i=1,...,n, on a metrical 

response  y, a vector x  = (x1,...,xp) of metrical covariates and a vector w  = (w1,..,wr) of 

categorical covariates are given. We assume that yi given the covariates and unknown 

parameters are independent and Gaussian with mean ηi and a common variance σ2 across 

subjects, i.e. yi ~ N(ηi,σ
2
). In our application on childhood undernutrition the response is 

stunting measured as a Z-score. Traditionally, the effect of the covariates on the response 

is modelled by a linear predictor 

 

 ηi  = x΄i β + w΄i γ.   (1) 

 

In this paper particular emphasis is on the effects of the two metrical covariates ‘age of the 

child’ AGC  and the ‘mother’s body mass index’  BMI, which are possibly non-linear, and 

on regional effects of the district where the mother and child live. Thus, we replace the 

strictly linear predictor  (1)  by the more flexible semi-parametric predictor 

 

ηi  = f1(xi1) + ... + fp(xip) + fspat(si) + w΄i γ. 

 

Here f1,...,fp are non-linear smooth effects of the metrical covariates and fspat is the effect of 

district si ∈ {1,...,S} where mother i lives. In a further step we may split up the spatial effect 

fspat into a spatially correlated (structured) and an uncorrelated (unstructured) effect 

 

fspat(si)   = fstr(si) + funstr(si). 

 

A rationale is that a spatial effect is usually a surrogate of many unobserved influences, 

some of them may obey a strong spatial structure and others may be present only locally. 

By estimating a structured and an unstructured effect we aim at separating between the two 
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kinds of factors. As a side effect we are able to assess to some extent the amount of spatial 

dependency in the data by observing which one of the two effects is larger. If the 

unstructured effect exceeds the structured effect, the spatial dependency is smaller and vice 

versa. Such models are common in spatial epidemiology, see e.g. Besag et al. (1991). 

 

2.2.  Prior assumptions 

 

In a Bayesian approach unknown functions fj, j=1,...,p, fstr, funstr and parameters γ as well as 

the variance parameter σ2 are considered as random variables and have to be supplemented 

with appropriate prior assumptions. In the absence of any prior knowledge we assume 

independent diffuse priors γj ∝ const, j=1,...,r, for the parameters of fixed effects. Another 

common choice are highly dispersed Gaussian priors. 

 

Several alternatives are available for the priors of the unknown (smooth) functions f1,...,fp. 

For the moment we may distinguish roughly two main approaches for Bayesian semi-

parametric modelling. These are base functions approaches with adaptive knot selection 

(e.g. Denison et al.,1998, Biller, 2000, and Smith and Kohn, 1996) and approaches based 

on smoothness priors. In the following we will focus on the latter one. Several alternatives 

have been proposed for specifying a smoothness prior for the effect f of a metrical 

covariate x. Among others, these are random walk priors (Fahrmeir and Lang, 2001a, 

Kandala, Lang and Klasen 2001), Bayesian smoothing splines (Hastie and Tibshirani, 

2000) and Bayesian P-splines (Lang and Brezger, 2001). In this paper we focus on P-

splines. 

 

The basic assumption behind the P-splines approach is that an unknown smooth function f 

of a particular covariate x can be approximated by a spline of degree l defined on a set of 

equally-spaced knots ζ0  =  xmin < ζ1 <... < ζr−1  < ζr  = xmin within the domain of x. It is 

well known that such a spline can be written in terms of a linear combination of m  = r+l 

B-spline basis 

functions Bt, i.e. 
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The basis functions Bt are defined locally in the sense that they are nonzero only on a 

domain spanned by 2+l knots. It would be beyond the scope of this paper to go into the 

details of B-splines and their properties, see e.g. de Boor (1978).  The vector β = (β1,..., βm) 

is unknown and must be estimated from the data. In a simple regression spline approach 

the unknown regression coefficients are estimated using standard methods for fixed-effects 

parameters. However, a crucial point with simple regression splines is the choice of the 

number and the position of knots. For a small number of knots the resulting spline space 

may be not flexible enough to capture the variability of the data. For a large number of 

knots estimated curves may tend to overfit the data. As a remedy to these problems Eilers 

and Marx (1996) suggest a moderately large number of knots (usually between 20 and 40) 

to ensure enough flexibility, and to define a roughness penalty based on differences of 
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adjacent regression coefficients to guarantee sufficient smoothness of the fitted curves. In a 

Bayesian approach, we replace difference penalties by their stochastic analogues, i.e. first 

or second order random walk models for the regression coefficients 

 

βt  = βt-1 +  ut,         βt  = 2βt-1 — βt-2 + ut, 

 

with Gaussian errors ut ~ N(0,τ2) and diffuse priors β1  ∝ const, or β1 and β2  ∝ const, for 

initial values, respectively. A first order random walk penalises abrupt jumps βt — βt-1 

between successive states and a second order random walk penalises deviations from the 

linear trend 2βt-1- βt-2. Random walk priors may be equivalently defined in a more 

symmetric form by specifying the conditional distributions of parameters βt given its left 

and right neighbours, e.g. βt-1 and βt+1 in the case of a first order random walk. Then, 

random walk priors may be interpreted in terms of locally polynomial fits. A first order 

random walk corresponds to a locally linear and a second order random walk to a locally 

quadratic fit to the nearest neighbours, see e.g. Besag et al. (1995). The amount of 

smoothness is controlled by the additional variance parameter τ2, which corresponds to the 

smoothing parameter in a frequentist approach. The larger (smaller) the variance, the 

rougher (smoother) are the estimated functions. 

 

Let us now turn our attention to the spatial effects fstr and funstr.  For the spatially correlated 

effect fstr(s),  s=1,...,S, we choose Markov random field priors common in spatial statistics 

(Besag, et al. 1991). These priors reflect spatial neighbourhood relationships. For 

geographical data one usually assumes that two sites or regions s and r are neighbours if 

they share a common boundary. Then a spatial extension of random walk models leads to 

the conditional, spatially autoregressive specification 
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where Ns is the number of adjacent regions, and r ∈ ∂s denotes that region r is a neighbour 

of region s. Thus the (conditional) mean of fstr(s) is an average of function evaluations 

fstr(s) of neighbouring regions. Again the variance τ2str controls the degree of smoothness. 

 

For a spatially uncorrelated (unstructured) effect funstr a common assumption is that the 

parameters funstr(s) are i.i.d. Gaussian 

 

funstr(s) | τ2unstr  ~ N(0, τ2unstr). 

 

For a fully Bayesian analysis, variance or smoothness parameters τ2j, j=1,...,p, str, unstr, 

are also considered as unknown and estimated simultaneously with corresponding 

unknown functions fj. Therefore, hyperpriors are assigned to them in a second stage of the 

hierarchy by highly dispersed inverse gamma distributions p(τ2j) ~ IG(aj,bj) with known 

hyperparameters aj  and bj. 
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2.3.  Posterior inference 

 

Bayesian inference is based on the posterior and is carried out using recent MCMC 

simulation techniques. Let α  denote the vector of all unknown parameters in the model. 

Then, under usual conditional independence assumptions, the posterior is given by 
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where βj, j=1,...,p, are the vectors of regression coefficients corresponding to the functions 

fj.  The full conditionals for the parameter vectors β1,...,βp  as well as the full conditionals 

for fstr, funstr and fixed effects parameters γ are multivariate Gaussian. For the variance 

components τ2j, j=1,...,p, str, unstr, and  σ2 the full conditionals are inverse gamma 

distributions. Thus, a Gibbs sampler can be used for MCMC simulation, drawing 

successively from the full conditionals for β1,...,βp, fstr, funstr, τ
2
j, j=1,...,p, str, unstr, and σ2. 

Efficient sampling from the Gaussian full conditionals of non-linear functions is 

guaranteed by Cholesky decompositions for band matrices. More details can be found in 

Rue (2001), Fahrmeir and Lang (2001b) and Lang and Brezger (2001). 

 

 

3.  Data and results 
 

The Demographic Health Surveys (DHS) of Tanzania and Zambia, both conducted in 

1992, are used in this study. These surveys are produced jointly by Macro International, a 

USAID-funded firm specialising in demographic research, and the national statistical 

agency of the respective country.  They draw a representative sample of women of 

reproductive age and then administer a questionnaire and an anthropometric assessment of 

themselves and their children that were born within the previous five years. The data set 

contains information on family planning, maternal and child health, child survival, HIV-

AIDS, educational attainment, and household composition and characteristics.  There are 

8 138 cases for Tanzania and 6 299 for Zambia.  The sample is drawn through stratified 

clustered sampling and draws, in the case of Zambia, 262 clusters from 53 districts in 

Zambia. In the case of Tanzania, we have data from 357 clusters drawn from 25 regions 

(which, to make them compatible with Zambia, we refer to as districts for our analysis).  

These districts can be grouped into nine provinces in Zambia and six provinces in 

Tanzania. 

 

One cannot assume that the clusters selected in each district are fully representative of the 

districts in which they are located, as the surveys only attempted to generate a fully 

representative sample at the provincial level.  Consequently, the spatial analysis will be 

affected by some random fluctuations.  Some of this random variation can be reduced 

through the structured spatial effects as it includes neighbouring observations in the 

analysis.  It should, however, be pointed out that such a spatial analysis should preferably 

be applied to census data, the most important official demographic data source in most 
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developing countries, where the precision of the spatial analysis would be much higher.  

Unfortunately, most censuses do not collect data on undernutrition and often the full 

dataset is not available for such analyses.  

 

We concentrate in the analysis on the flexible modelling of the effects of the child’s age, 

the mother’s BMI and the districts on chronic undernutrition (stunting), measured using the 

Z-score as described above, which we standardised to take on a mean of 0 and a standard 

deviation of 1. In addition, we consider several categorical variables including the sex of 

the child, the education and employment situation of the mother, access to water (later 

omitted as it was found to have a negligible influence) and locality (urban and rural). All 

categorical variables are included in effect-coding (rather than as usual dummy variables) 

and in the tables we also report on the reference category.  The education variable is coded 

in three categories called, respectively, ‘no education and incomplete primary education’ 

(reference category), ‘complete primary education and incomplete secondary education’, 

and ‘complete secondary education and higher’. For the employment situation of the 

mother, we distinguish between working and not working. We estimate separate models 

for each country with predictor 

 

η = γ0 + f1(AGC) + f2(BMI) + fspat(s) + γ΄w 

 

where w includes the categorical covariates in effect coding. The functions f1 and f2 are 

modelled by cubic P-splines with second order random walk penalty. For the spatial effect 

fspat we experimented with different prior assumptions. For both countries we estimated 

models where either a structured or an unstructured effect was included as well as a model 

where both effects were included. Based on these results we found clear evidence for both 

countries of spatial correlation among neighbouring districts. Hence, a spatially correlated 

effect fstr is included in the predictors of our final models. For Zambia, we additionally 

include an unstructured effect funstr because there is evidence of local extra variation in the 

highly urbanised areas of Zambia. For Tanzania an unstructured effect is excluded from 

the final model. All computations have been carried out with BayesX, a software package 

for Bayesian inference based on MCMC simulation techniques, see Lang and Brezger 

(2000). 

 

Table 1 shows the results of the fixed-effects parameters in Tanzania. Despite modelling 

the spatial effects differently here, the results for the (non-spatial) fixed effects are 

virtually identical to Kandala, Lang, and Klasen (2001). 

 

The substantive findings are generally as expected.  Children of highly-educated mothers 

living in urban areas are better nourished than other children. Children of working mothers 

do slightly worse. Being female is also associated with reduced levels of stunting, a finding 

consistent with Svedberg (1996) and Klasen (1996). 

 

The results are quite similar for Zambia (Table 2).  The direction of influences are the 

same in both countries.  The size of the coefficients differ slightly.  In particular, both the 

effect of education and of residence (urban versus rural) is somewhat smaller in Zambia. 
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Moreover, the 80 % credible region for the mother’s employment status now includes zero.  

Access to water was found to be insignificant in both countries and was therefore omitted. 

 

Figures 1 to 4 show the non-linear effects of child’s age and the mother’s BMI.  Also here, 

the differences to Kandala, Lang, and Klasen (2001) which was based on a different prior 

are very minor.  Moreover, the results are not sensitive to the additional inclusion of non-

linear regional effects, suggesting that the method applied is able to separately identify 

non-linear covariate and regional effects. Figure 1 shows the effect of the BMI of the 

mother in Tanzania. Shown are the posterior means together with 80 % pointwise credible 

intervals. As hypothesised, we find the influence to be in the form of an inverse U shape.  

While the inverse U looks nearly symmetric, the descending portion exhibits a much larger 

range in the credible region.  This appears quite reasonable as obesity of the mother 

(possibly due to a poor quality diet) is likely to pose less of a risk for the nutritional status 

of the child as very low BMIs which suggest acute undernutrition of the mother. The Z-

score is highest (and thus stunting lowest) at a BMI of around 30-35. 

 

Figure 2 shows the effect of the child’s age on its nutritional status in Tanzania.  As 

suggested by the nutritional literature, we are able to discern the continuous worsening of 

the nutritional status up until about 20 months of age.  This deterioration sets in right after 

birth and continues, more or less linearly, until 20 months.  Such an immediate 

deterioration in nutritional status is not as expected as the literature typically suggests that 

the worsening is associated with weaning at around four to six months. One reason for this 

unexpected finding could be that, according to the surveys, most parents give their children 

liquids other than breast milk already shortly after birth which might contribute to 

infections at these early ages. 

 

After 20 months, stunting stabilises at a low level. Through reduced growth and the 

waning impact of infections, children are apparently able to reach a low-level equilibrium 

that allows their nutritional status to stabilise. 

 

We also see a slight improvement of the Z-score around 24 months of age. This is picking 

up the effect of a change in the data set that makes up the reference standard. Until 24 

months, the currently-used international reference standard is based on white children in 

the United States of high socioeconomic status, while after 24 months, it is based on a 

representative sample of all US children (WHO, 1995). Since the latter sample exhibits 

worse nutritional status, comparing the Tanzanian children to that sample leads to a sudden 

improvement of their nutritional status at 24 months.  This anomaly of the reference 

standard is one reason for WHO’s current efforts to construct a new reference standard 

(WHO, 1999). 

Figure 3 shows the effect of mother’s BMI on chronic undernutrition in Zambia.  Also here 

we find a, somewhat less pronounced, inverse U-shape.  The inverse U-shape is much 

more pronounced on the ascending left portion than on the descending right portion, which 

is only barely discernible. Again, this is consistent with the notion that acute undernutrition 

of the mother is more of a risk for the child than obesity.  Figure 4 shows the impact of the 

child’s age on stunting in Zambia.  Here the deterioration in the nutritional status appears 

to be slightly longer.  It only stabilises at around 22-24 months. Also here, we see a slight 
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improvement in the Z-score around 24 months associated with the change in the reference 

population. 

 

To explore district-specific spatial effects, Figures 5-11 explore the spatial effects of 

undernutrition in the two countries.  As mentioned above, in Tanzania we report on the 

model that only includes structured effects, while in the case of Zambia we report on the 

model that includes both structured and unstructured effects.  Figure 5 shows the structured 

random effects for Tanzania and Figure 6 indicates the significance of the observed spatial 

effects in the form of a posterior probability map. The levels correspond to significantly 

negative (black coloured), significantly positive (white coloured) and insignificant (grey 

coloured).  Two important observations emerge.  First, there is a strong south north 

gradient in these regional effects with a fairly sharp dividing line running through the 

centre of the country.  Over and above the impact of the fixed effects, there appear to be 

negative influences on undernutrition in the south that are quite general and affect most of 

the regions there.  Given that the southern districts all are at significantly lower elevation 

than the rest of the country, it is likely that climatic and associated disease factors are 

responsible for this pronounced regional pattern.  Second, living in the capital Dar es 

Salaam is associated with significantly better nutrition despite being surrounded by areas 

with negative regional effects on undernutrition.  Living in the capital must thus provide 

access to nutrition and healthcare that is superior in ways that have not been captured 

adequately in the fixed effects.  

 

To compare our district-specific non-linear effects with our simple fixed effects for 

provinces which we used in Kandala et al. (2001), Figure 7 presents a map that shows 

those provincial effects for the six provinces.  Note that one can only distinguish five 

provinces as the effects for the Central province and the Coastal province are virtually 

identical.  These crude provincial fixed effects miss most of the findings we discussed 

above.  In particular, the sharp south–north divide present in the district analysis is now no 

longer visible as the Central and Coastal provinces include districts on both sides of that 

divide.  Moreover, the positive effect of Dar es Salaam is simply averaged in with the 

Coastal province.  Clearly, a lot is lost when relying on this crude strategy of modelling 

spatial effects. 

 

Figures 8 to 10 show the structured and the unstructured random effects for Zambia. The 

structured effects show a sizeable difference between significantly worse undernutrition in 

the northern parts of the country (in particular the districts in Luapula and Northern 

province), and significantly better nutrition in the central and south-western parts.  These 

regional patterns are similar, but not identical to analyses of poverty and deprivation 

undertaken by the World Bank (World Bank, 1995).  In terms of income poverty, the 

World Bank found poverty to be lowest in the central parts of the country.  In addition, 

poverty was also much lower along the main trunk road and railroad lines even outside the 

central part of the country.  In terms of deprivation (based on a mean score of various 

service items), the World Bank also found Luapula province among the worst off, while it 

surprisingly included the Central province and the North-western province among the 

worst-off regions.  While we also find Luapula province to be among the worst off in the 
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country, our analysis shows a clearer geographic pattern with the north-east being worst 

off and the central and south-western districts being best off.  

 

The unstructured random effects are mostly not significant.  But they nevertheless point in 

interesting directions.  In particular, they suggest a fair amount of variation over and above 

the structured effects.  Particularly noteworthy is the fact that for some urban centres, the 

unstructured effects point to higher undernutrition, once the fixed effects (which include a 

positive effect of urban areas) and the structured effects are controlled for.  This is 

particularly noteworthy for Kitwe in the Copperbelt, but also visible for Lusaka and 

Kabwe in the central part of the country.  In contrast to Tanzania, it thus appears that some 

urban agglomerations are associated with worse nutrition.  This may be related to the 

impact of economic decline and adjustment policies which have hit the Copperbelt and 

some other urban areas particularly hard (World Bank, 1995).  

 

Figure 11 shows the provincial fixed effects used in Kandala et al. (2001).  While the 

overall spatial structure is more or less accurately reproduced, the effects of urban 

agglomerations on the structured and unstructured effects distort the picture particularly for 

the Copperbelt and the Central province where most of these urban agglomerations are.  

 

In sum, the flexible modelling of the district-specific effects paints a much more nuanced 

picture than was presented by the regional fixed effects and thus gives a better impression 

of the spatial variation of undernutrition.  Moreover, the semi-parametric Bayesian 

approach used is able to identify subtle influences of the mother’s BMI, the child’s age on 

the nutritional status of the child.  

 

These findings are not only relevant for analytical purposes but have considerable policy 

significance.  In particular, the age effect points to considerable nutritional problems 

immediately after birth, possibly related to the use of unclean liquids.  This is a subject that 

should be investigated further.  Second, the non-linear influence of the BMI indicates that 

not only parental undernutrition, but parental malnutrition might also have negative effects 

on the nutritional status of children.  Third, the regional influences on undernutrition also 

are of great policy significance.  In particular, they suggest that, in Tanzania inhabitants of 

the capital are much less affected by undernutrition, even if they suffer similar risk factors 

(as captured by the fixed effects).  The same is, however, not true in Zambia, where some 

urban agglomerations are associated with higher undernutrition.  Also, more emphasis 

must be placed upon the role of remoteness as well as climatic and geographic factors on 

undernutrition.  The south-north divide in Tanzania and the regional effects in Zambia bear 

out the importance of such considerations.   

 

 

4.  Conclusion 
 

In this paper, we have applied a semi-parametric Bayesian approach to model the 

determinants of chronic undernutrition (stunting) in Tanzania and Zambia. The fixed 

effects show the importance of the mother’s education, employment status, residence, and  
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the sex of the child on chronic undernutrition.  We also find that our methods are 

identifying subtle effects of the mother’s BMI, the child’s age, and regional influences on 

undernutrition.  In particular, the effects of the BMI on the child’s nutritional status appear 

to be in the form of an inverse U.  Moreover, stunting appears to worsen until about 20–25 

months and then stabilises at a low-level equilibrium.  Furthermore, we find sizeable 

regional effects.  In both countries, we are able to pick up a distinct regional pattern of 

undernutrition that is not adequately captured by relying on provincial fixed effects.  

 

Given the limitations of spatial analysis when the database is a household survey, an 

important message emerging from this research is that it would be very worthwhile to have 

census data and other official data sources to undertake such detailed spatial analyses.  

With such data sources, much more detailed and more precise spatial structures could be 

uncovered which would be highly relevant for both analytical as well as policy purposes.  
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6.  Tables 
 

Table 1: Fixed effects for Tanzania (effect coding) 

 
 

Variable Mea

n 

10 % 

quantile 

90 % 

quantile 

Constant 0.29 0.17 0.41 

Working –

 0.02 

– 0.04 0 

Not working 0.02 0 0.04 

No education and incomplete primary 

education 

–

 0.26 

– 0.35 – 0.17 

Complete primary education and incomplete 

secondary education 

–

 0.18 

– 0.26 – 0.09 

Secondary education and higher 0.43 0.26 0.60 

Urban 0.1 0.07 0.12 

Rural – 0.1 – 0.12 – 0.07 

Male –

 0.04 

– 0.05 – 0.02 

Female 0.04 0.02 0.05 
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Table 2: Fixed effects for Zambia (effect coding) 

 

 

Variable Mean 10 % 

quantile 

90 % 

quantile 

Constant 0.1 0.04 0.16 

Working 0.01 – 0.01 0.02 

Not working – 0.01 –  0.02 0.01 

No education and incomplete primary 

education 

– 0.17 – 0.21 – 0.14 

Complete primary education and incomplete 

secondary education 

– 0.06 – 0.09 – 0.03 

Secondary education and higher 0.24 0.18 0.30 

Urban 0.09 0.06 0.12 

Rural – 0.09 – 0.12 – 0.06 

Male – 0.06 – 0.07 – 0.04 

Female 0.06 0.04 0.07 

 

 

 
Figure 1: Non-linear effect of the mother’s body mass index for Tanzania 
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Figure 2: Non-linear effect of child’s age for Tanzania 

 

 
Figure 3: Non-linear effect of the mother’s body mass index for Zambia 
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Figure 4: Non-linear effect of the child’s age for Zambia 

 
Figure 5: Posterior mean of the structured spatial effect for Tanzania 
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Figure 6: Posterior probabilities of the structured spatial effect for Tanzania 

 

 
Figure 7: Regional effects for Tanzania 
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Figure 8: Posterior mean of the structured spatial effect for Zambia 

 

 
Figure 9: Posterior probabilities of the structured spatial effect for Zambia 
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Figure 10: Posterior mean of the unstructured spatial effect for Zambia 

 

Figure 11: Regional effects for Zambia 
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Abstract 

 

In many cases, the public release of survey or census data at fine geographical resolution (for 

example, counties) may endanger the confidentiality of respondents. A strategy for such cases is to 

aggregate neighbouring regions into larger units that satisfy confidentiality requirements. An 

aggregation procedure employed in a prototype system for the US National Agricultural Statistics 

Service is used as a context to investigate the impact of aggregation on statistical properties of the 

data. We propose a Bayesian simulation approach for the analysis of such aggregated data. As a 

consequence, we are able to specify the type of additional information (such as certain sample sizes) 

that needs to be released in order to enable the user to perform meaningful analyses with the 

aggregated data. 

 

 

1.  Introduction 
 

The work presented here derives from issues encountered at the National Institute of 

Statistical Sciences (NISS) in the course of developing a web-based system for 

disseminating survey data collected by the US National Agricultural Statistics Service 

(NASS). 

This system was designed for the case wherein the public release of data (on use of 

agricultural chemicals) at the county level may compromise the confidentiality of survey 

respondents. The mechanism adopted for preserving confidentiality is geographical 

aggregation: data from adjacent non-disclosable counties are aggregated to the level of 

disclosable ‘supercounties.’ See Karr et al. (2001) for details. 

 

While aggregation prevents disclosure, it may also, however, distort the data. Thus, the 

central question we address is: To what extent does confidentiality-preserving aggregation 

hamper a statistician’s ability to make informative inferences about the surveyed 

population? 

                   
(1) Research supported by NSF grants EIA-9876619 and DMS-9711365 to the National Institute of Statistical Sciences. 
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The main contribution is a Bayesian simulation approach for the analysis of such 

aggregated data. As a consequence, we are able to specify the type of additional 

information (such as certain sample sizes) that the disseminator needs to release in order to 

enable the user to perform meaningful analyses with the aggregated data. 

We begin, in Section 2, with a description of the NASS data and disclosure problem. We 

outline the disclosure-risk criteria adopted by NASS (the so-called (n,p)-rule — see 

Willenborg and de Waal, 1996), and sketch the aggregation procedure used in the NASS 

system. In Section 3, we present design-based estimators for the population mean and its 

variance estimator, and show that they are unbiased. Within the setting of the design-based 

approach, it is difficult to account for the effect of the (n,p)-rule as a risk criterion. As an 

alternative, we propose in Section 4 a Bayesian approach to the problem; a companion 

simulation study is presented in Section 5. In Section 6, we present a Bayesian analysis in 

the NASS survey setting. Conclusions appear in Section 7. 

 

 

2.  The NASS system 
 

2.1.  Data 

 

The data, which are collected by NASS through an annual survey of farms, consist of on-

farm use of various chemicals (fertilisers, insecticides, herbicides and fungicides) on 

various crops. For our purposes, each data record can be thought of as consisting of farm 

identification (ID), farm size in acres, crop, chemical, pounds of chemical applied, state, 

county and year. 

The primary information reported by NASS is application rates (pounds applied per acre) 

of certain chemicals on particular crops in geographical regions of interest. Ideally, for 

instance, a user would be able to learn the rate of application of the herbicide Alachlor on 

cornfields in all counties in North Carolina in 1996. 
 

2.2.  Disclosure criteria 

 

NASS is concerned about protecting the identities (specifically the sampling weights) of 

farms in the survey. Such a disclosure would breach the respondent confidentiality 

promised by NASS, and would be even more alarming if some action were taken against 

the farm (even erroneously), such as litigation for excessive soil contamination or harm to 

workers. Thus, any information that would enable a user to estimate accurately the 

chemical usage on a particular farm is considered undisclosable (Dalenius, 1977). 

NASS employs two rules to determine if the data for a particular county pose a 

confidentiality risk. The first is the n-rule: if only one or two farms were sampled in the 

county (thus, n = 3), the possibility of re-identification is too high, and the application rate 

for that county is undisclosable. 

Second is the p-rule: a county-level application rate is undisclosable if the sample contains 

a dominant farm, the size of which (in acres) is more than p % of the total size of all farms 

sampled in that county (the system built by NISS uses p = 60 %). The rationale is that a 
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farm which dominates in a sample is susceptible to both identity and attribute disclosure 

risks. 

We refer to these risk criteria collectively as the (n,p)-rule, which is a version of what is 

referred to in the statistical data disclosure literature as the (n,k)-rule (see Willenborg and 

de Waal, 1996). Note that there is an additional level of protection arising from the user’s 

not knowing which farms are included in the survey. 

 

2.3.  The NASS system: aggregation to prevent disclosure 

 

Currently, NASS releases chemical usage information only at the state level. At the other 

extreme, a system that simply refused queries for undisclosable counties would lead to 

unacceptable user annoyance and disillusionment, since, for the NASS data and the (n,p)-

rule with n = 3 and p = 60 %, more than a half of the counties are undisclosable. 

The system implemented by NISS produces intermediate aggregations that are more 

informative than state-level data but preserve confidentiality. It does so by aggregating 

undisclosable counties with neighbouring counties to form disclosable ‘supercounties’. As 

a result, NASS can release data at the finest level of detail consistent with the risk criteria. 

Aggregations must be computed automatically, since there too many (crop, chemical, year, 

state) combinations to permit manual aggregation on a case-by-case basis. The system 

employs heuristic, ‘greedy’ algorithms based on the following procedure: examine the 

undisclosable (super)counties in a random order and merge them with a neighbouring 

(super)county according to some criterion for desirability of merging with the selected 

neighbour; continue until only disclosable (super)counties remain. See Karr et al. (2001), 

as well as the more detailed description in Karr et al. (2000), for specifics.  A prototype 

version of the system is available on the web at http://niss.cnidr.org. 

 

 

3.  Design-based estimators 
 

We abstract the NASS system as follows. Let ),...,( 21 NYYY=P be the population (of 

farms) of interest, where N is the size of the population. (Initially, we suppose that farms 

have only one attribute.) Suppose that the disseminator samples ),...,( 21 nyyy=S  using 

simple random sampling from P . 

The disseminator also draws a partition ( )kκκκ ,.., 21=κ  of the index set (1,2,…n) from a 

distribution ( )S|κp . Often, ( )S|κp  is independent ofS : for example, if iκ  is defined 

by geographical units such as counties or states, κ  is independent of S . On the other 

hand, in the NASS setting, κ depends on the sampled values iy , which leads to the need 

for the Bayesian approach described in Section 4. 

Let in  be the number of observations in the i th  partition, iκ  for i = 1,2,…k. The 

disseminator aggregates the sample over the partition κ and releases 

( ){ ( ) ( )}kk nynyny ,,....,,,, 2211
=A , 
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where ij ji
nyy

i

/∑ ∈
=

κ
. 

 

3.1.  Estimation of population mean 

The sample mean  nyy
n

i

i
/

1

∑
=

=  is still available from the aggregated data A and is a 

design-unbiased estimator regardless of whether κ is independent of S . 

The usual variance estimator ( ) )1/(
2

1

2 −−=∑ =
nyys

n

i i of 

( ) )1/(
2

1

2 −−=∑ =
NYYS

n

i i cannot be recovered from A  in general. However, if κ is 

independent of the sample S , a design-based unbiased estimator is available for 
2S . 

 

Theorem 1: (a) The sample mean y  is a design-based unbiased estimator of the 

population mean for any distribution of κ . 

(b) If κ  is independent of S , then 

( )2
1

2

1

1
yyn

k
s i

k

i

ia −
−

= ∑
=

 

is an unbiased estimator of Var ( )y . 

Proof. Since y  is independent of κ , it is unbiased.  Now, we prove 
2

as  is unbiased. First, 

note that 

( ) ( ) ( )( ) ( ) ( )22

1

2

1

2

1

YynYynYyYynyyn i

k

i

ii

k

i

ii

k

i

i −−−=−−−=− ∑∑∑
===

. 

By Theorem 2.2 of Cochran (1977),  

( )
n

S

N

n
YyE

2
2

1 







−=−  . 

Since κ is independent of S , the conditional distribution of iy  given κ is the same as 

that of the sample mean of a simple random sample of size in , hence, 

( )[ ]
i

i

n

S

N

nN
YyE

2
2

| 






 −
=− κ . 

 

Combining these results, we get 

( ) 22
2

2

1

)1()(| Sk
N

nN
SnkN

N

S
YynE

k

i

i −=
−

−−=







−∑

=

κ . 

 

This completes the proof. 
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Corollary 1: If κ  is independent of S , then 

n

s

N

n
y a

a

2

1)( 







−=υ  

is an unbiased estimator of Var ( y ). 

Note that the variance estimator in corollary 1 is not a valid estimator for aggregated data 

arising from the (n,p)-rule, because in this case the partition generated by it is not 

independent of S . For this reason, we later introduce a Bayesian estimation procedure in 

which the (n,p)-rule can be accommodated in the analysis. 

 

3.2.  Estimation of ratios 

 

Moving closer to the NASS setting, suppose that data now have two attributes: the 

population of interest is  )),),...(,(),,(( 2211 NN YXYXYX=P . For the NASS problem, 

the Xi are farm sizes and the Yi are amounts of chemical used. The application rates Yi / Xi  

are the information to be released. 

As in Section 3.1, let ( ){ ( ) ( )}nn yxyxyx ,.,..,,, 2211=S  be a simple random sample from 

P , and let κ  be the partition of {1,2,3,…,n} that defines the aggregated data. The 

disseminator then releases 

( ){ ( ) ( )}kk nyxnyxnyx ,,,....,,,,,,
1212111=A , 

 

where ij ji nxx
i

/∑ ∈
=

κ
 and ij ji

nyy
i

/∑ ∈
=

κ
. 

 

The customary estimator for the population ratio XYR =  is 

∑

∑

=

==
n

i i

n

i i

x

y
R

1

1ˆ . 

 

From the aggregated sample A , the ratio estimator R̂  can be recovered, but (as in the 

case of population mean) its variance estimator based on S cannot be recovered from A . 

 

From theorem 2.5 of Cochran (1977), the variance of the ratio estimator is approximately 

( ) ( )

1

1
1

2

2 −

−− ∑ =

N

RXY

nX

N
n N

i ii
. 

 

Note that  

( )

1

1

2

−

−∑
=

N

RXY
N

i

ii
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is the population variance of quantities iii RXYD −= , and can be estimated based on A  

by 

( )2
11

1
ii

k

i

i xRyn
k

−
−
∑
=

. 

This leads us to 

( )
( )

1

ˆ
1

)ˆ( 1

2

2 −

−
−

=
∑
=

k

xRyn

xn

f
R

k

i

iii

aυ  

 

as an estimator for the variance of R̂ . As in the estimation of the population mean, this 

estimator is based on the assumption that κ is independent of S . Note also that for the 

variance estimation of R̂  the sizes of aggregates ( )knnn ,...,, 21  must be released. 

 

 

4.  Bayesian analysis of univariate data 
 

In this section, we discuss the Bayesian analysis of aggregated data with the (n,p)-rule. 

Recall that the design-based estimators in Section 3 do not account for the effect of 

aggregations that are dependent on the sample. 

Suppose the population ( )NYYY ,...,, 21  is drawn from a parametric density ( )θ|yf , and 

( )nyyy ,...,, 21  are a simple random sample from the population. Denote the sum of the 

y-values in the ith partition by .iy , i.e. ∑ ∈
=

ij ji yy
κ. . Then, based on aggregated data 

( ) ( ) ( ),,,....,,,, ..22.11 kk ynynyn and the prior ( )θπ , the likelihood is         

( ) ( ) ( )S||
1

.

*
κpyf

k

i

i

ni∏
=

θθπ , 

 

where 
kf *  is the density of k-convolution of  f. If  f is a normal or gamma density, 

kf *  is 

known, but in many cases, of course,
kf *  is unknown. This does not pose much difficulty 

in Bayesian computation with latent variables ( )Nyyy ,...,, 21  in Markov chain Monte 

Carlo (MCMC) analyses. 

 

The joint posterior distribution of ( )S S,\P,θ  given A  is proportional to 

( ) ( ) ( )∏ ∏ ∑
= = ∈














=

N

i

k

j l

jli

j

yyIYfp
1 1

.||
κ

θθπ Sκ . 

First, note that the distribution of the unsampled portion of the population, 

( )Nnn YYY ,..., 21 ++  can be integrated out from the posterior distribution and it suffices to 
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consider only the likelihood of the sampled data. Moreover, if κ is independent of S , the 

factor )(κp does not contribute to the likelihood, and can be dropped. On the other hand, 

if κ is dependent on S — which happens for aggregations produced with the (n,p)-rule — 

)|( Sκp needs to be considered in the likelihood calculation. 

In this paper, we focus on aggregated data arising from the (n,p)-rule. In this case, and in 

many others, because of the complicated nature of aggregation algorithms, the probability 

distribution of κ , )|( Sκp  is unknown not only to the user but also to the disseminator. 

In order to develop insight into the issues, in this particular MCMC computation, consider 

a simpler case: we assume that the partition is drawn from a linear aggregation algorithm. 

It forms an aggregate by adding observations one by one until the aggregate satisfies the 

(n,p)-rule. 

 

Linear aggregation algorithm 

Step 1: Set 1←i , and φ A ← . 

Step 2: Repeat until A satisfies the (n,p)-rule: { }U i  AA← ; 1+← ii . 

Step 3: Set { }U A A A ← . 

Step 4: Set φ A ← . Go to step 2. 

In practice, the last aggregate may not satisfy the (n,p)-rule. In this event, it is merged with 

the previous aggregate, and we check whether the (n,p)-rule is satisfied. If not, the process 

of backward aggregation is continued until it is. Because the aggregate constitutes only a 

very small portion of the whole data, this additional step will not be considered in the 

likelihood. 

If κ  is drawn to satisfy the (n,p)-rule with n0 and p0, then the posterior distribution of 

( )P,θ  given A  is proportional to 

( ) ( ) 









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

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m
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1 1

0
1

1 1

1

1 1

1

maxmax|θθπ

, 

 

 

where 0m , ∑ =
=

i

j ji nm
1

 for i = 1,2,…,k. 

 

The MCMC steps follow: 

Step 1: Generation of  θ given nyyy ,...,, 21 . 

The conditional distribution of θ is proportional to ( ) ( )∏ =

n

i iyf1
|θθπ . Hence, sampling 

θ is the same as sampling θ from the posterior of i.i.d. observations, nyyy ,..., 21 . 
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Step 2: Generation of nyyy ,...,, 21 , given A and θθθθ. 

We illustrate this step with the first aggregate, for the rest is the same. First, generate  

0
,..., 21 nyyy  by the acceptance–rejection sampling methods, so that ∑

=

>
0

1

0

n

j

ji ypy for 

some 0,...2,1 ni = . Second, for 1,...,1 10 −+= nnl , generate ly  by the acceptance–

rejection or inverse-cdf sampling method, so that ∑
=

>
l

j

ji ypy
1

0 for some li ,...2,1= . 

Third, sample 
1n
y  by the acceptance–rejection or inverse-cdf (cumulative distribution 

function) sampling method so that ∑
=

≤
1

1

0

n

j

ji ypy  for all 1,...,2,1 ni = . 

If inference on the finite population Nyyy ,..., 21  is necessary, the following additional step 

can be added to sample the unsampled portion of the finite population. 

 

Step 3: Sampling Nn yyy ,...,, 21+ , given θθθθ. 

Sample Nn yyy ,...,, 21+  that are i.i.d. from ( )θ|yf . 

Finally, note here that we need to know the value of p in the (n,p)-rule in order to construct 

the MCMC algorithm and the likelihood on which the posterior is based. Otherwise, the 

Bayesian analysis is simply not possible. For this reason, in disseminating aggregated data, 

the numbers of subjects in each aggregate as well as the value of  p must be released to 

users. 
 

 

5.  Simulation study 
 

While the design-based approach gives simple mean and ratio estimators, it cannot 

accommodate the variability arising from partitions dependent on the data, as occurs for 

the (n,p)-rule. Since the dependence is caused only by the ‘p portion’ of the (n,p)-rule (an 

n-rule alone leads to aggregations dependent on the sampling, but not the sampled data 

values), the simulation study focuses on the effect of the p-rule on confidence intervals for 

design-based and Bayesian approaches. 

The 500 samples of size 100 are generated from Gamma(1,1) and Gamma(0.5,0.5), with 

population means 1,1 and variances 1,2, respectively. Since the variance affects the size of 

aggregation with the p-rule, n is fixed at 3 in all simulations. For each sample of size 100, 

aggregates were generated by the linear aggregation algorithm, and, for each aggregated 

sample, 95 % design-based and Bayesian credible intervals for the population mean and 

their lengths are computed, and then checked if they contain the population mean. The 

design-based confidence interval is computed with 

( ).96.1 xx aυ±  

The exponential distribution with mean 100 is employed for the gamma parameters α and 

β, reflecting vague prior information. We tried exponential priors with different means, but 
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the posterior seems to be robust with respect to the choice of the prior parameters. The 

number of MCMC iterations used is 5 000, which seems enough for the model. 

The simulation results are shown in Table 1. Since the design-based confidence interval 

does not account for the p-rule, the coverage probability is slightly less than the nominal 

coverage rate of 95 % and the lengths remain about the same as p varies. This is expected 

because the design-based approach does not take the p-rule into consideration and does not 

assume the parametric distributional form of the population. 

In fact, we initially expected poorer behaviour of the design-based approach, but, to our 

surprise, its performance is not as bad as we expected. 

The coverage probabilities of Bayesian credible intervals fluctuate around the nominal 

coverage probability and the lengths of the credible sets increase as p decreases. There is a 

tendency for the simulated coverage probability of the Bayesian credible set to increase as 

p decreases. We are not sure what causes this. 

 

Table 1:   Simulated coverage probabilities and lengths of the confidence 

intervals for X for the n-rule with n = 3 — samples are drawn from 

Gamma (αααα,αααα) 

 

  Design-based confidence 

interval 

Bayesian credible interval 

Population p-rule Coverage 

probability 

Length Coverage 

probability 

Length 

Gamma(1,1) 0.9 0.908 0.386 0.934 0.397 

 0.8 0.934 0.385 0.948 0.403 

 0.7 0.946 0.384 0.962 0.406 

 0.6 0.928 0.387 0.950 0.422 

 0.5 0.920 0.380 0.966 0.452 

 0.9 0.920 0.547 0.946 0.566 

 0.8 0.934 0.550 0.948 0.570 

 0.7 0.936 0.539 0.954 0.580 

 0.6 0.912 0.534 0.958 0.601 

 0.5 0.916 0.546 0.970 0.664 

 

 

6.  Analysis of NASS chemical usage survey 
 

In this section, we analyse data in the NASS setting, which were aggregated using the 

algorithms presented in Karr et al. (2000). 

 

6.1.  The model, the prior and the posterior 

 

For a given crop (vegetable or fruit) and chemical active ingredient (AI), the population is 

)),),...(,(),,(( 2211 NN YXYXYX=P . 
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where  iX  is the size of the ith farm in acres and iY  is the amount of AI used on that farm. 

We assume iX  are i.i.d. from Gamma(α,β). Since iY  is the amount of AI applied to the 

land of size iX , it is natural to assume that iii XYZ =  are exchangeable; hence, we 

assume that iZ  are i.i.d. from Gamma(γ,δ). 

 

The simple random sample ( ){ ( ) ( )}nn yxyxyx ,.,..,,, 2211=S  is drawn from the 

population. The partition κ is assumed to be formed by the linear aggregation algorithm 

with the (n,p)-rule on ix with 0nn = and 0pp = . The data released, therefore, are       

                          ( ) ( ) ( ){ }...2.21.1.11 ,,,..,,,,,, kkk yxnyxnyxn=A . 

We use very flat priors on the parameters: α  ∼ Exponential(λα), β ∼ Exponential(λβ), 

γ ∼ Exponential(λγ) and δ ∼ Exponential(λδ), where λα. =  λβ  = λγ = λδ = 0.01. The 

posterior distribution of α,β,γ,δ, and P is proportional to 

( ) ( ) ( ) ( ) ),|(Gamma),|(Gamma
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Note that the unsampled portion of the population is integrated out from the posterior 

distribution. 

The MCMC steps are as follows: 

Sampling αααα, given ββββ, γγγγ, δδδδ, X and Z 

The full conditional distribution of α is proportional to 

( ) ( ) 
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This is not a well-known distribution, and we use a random walk Metropolis-Hastings 

sampler with a uniform proposal distribution. 

 

Sampling γγγγ, given αααα, ββββ, δδδδ, X and Z 

The full conditional of γ is of the same form as that of α. It is proportional to 
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A random walk Metropolis-Hastings sampler with a uniform proposal distribution is 

employed. 

 

Sampling ββββ, given αααα, γγγγ, δδδδ, X and Z 

 

This full conditional turns out to be a gamma distribution: 









++ ∑

=

n

i

ix
1

 1,nGamma βλα . 

 

Sampling δδδδ, given αααα, ββββ, γγγγ, X and Z 

 As in the full conditional distribution of β, the conditional distribution of δ is      


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




++ ∑

=

n

i

iz
1

 1,nGamma δλγ . 

 

Sampling ijj jzx κ∈,, , given αααα, ββββ, γγγγ, δδδδ, ∑ ∈
=

ij ij xx
κ .  and ∑ ∈

=
ij ijj yzx

κ .  

For simplicity of notation, we will consider only κ1 and suppose 

κ1 = {1,2,..,n1.}. Hence, we need to sample 
11

,...,,,,...,, 2121 nn zzzxxx , conditional on 

δγβα ,,,,., .11 yx . Their conditional distribution, however, is not of a simple form. We 

therefore sample
1

,...,, 21 nxxx  and 
111

,...,, 222111 nnn zxyzxyzxy === . The latter 

conditional distribution is proportional to 
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First, 
1

,..., 21 nxxx are sampled in the same way as step 2 in Section 4. The difficult part is to 

sample 
111

,...,, 222111 nnn zxyzxyzxy === conditional on 
1

,..., 21 nxxx and .iy . We use a 

Metropolis-Hastings algorithm with the Dirichlet distribution with parameter 

( )∗∗∗∗ γγγγ ,....,,, .  The acceptance rule hence becomes 
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The following two steps can be added if the unsampled portion of the population is 

necessary for the computation of the parameter of interest. 

Sampling Nniyi ,...,1, += , given αααα, ββββ, γγγγ, δδδδ, nxxx ,...,, 21  and Z 

For Nni ,...,1+= , the full conditional distribution of yi is Gamma(α,β). 

 

Sampling Nnizi ,...,1, += , given αααα, ββββ, γγγγ, δδδδ, nzzz ,...,, 21  and Z 

For Nni ,...,1+= , the full conditional distribution of yi is Gamma(γ, δ). 

 

6.2.  Posterior analysis 

 

The Markov chain was run for 30 000 iterations, which seems ample for the convergence. 

The first 6 000 posterior samples were discarded for burn-in and from the remaining 

24 000 samples every third output was used in the analysis. Histograms are based on the 

posterior samples of population mean (α/β) in acreage, α and β, ratio (γ/δ) in pounds per 

acre, γ and δ. Figure 1 shows the histograms of the six quantities and the summary 

statistics from the posterior samples of the six quantities displayed in Table 2.  
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Figure 1:  Histograms from the MCMC output: (a) population mean of farm 

sizes; (b)population mean of ratios; (c) αααα; (d) ββββ; (e) γγγγ; (f) δδδδ 
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Table 2: Summary statistics from the posterior distribution 

 

Parameter Mean Standard deviation 95 % credible set 

Mean of farm size 214.8 9.541 (196.84,234.10) 

Mean of ratio 0.243 0.0169 (0.213,0.279) 

α 0.712 0.0360 (0.647,0.786) 

β 0.00332 0.000223 (0.00291,0.00379) 

γ 0.494 0.0584 (0.406,0.635) 

δ 2.056 0.322 (1.551,2.794) 

 

 

7.  Conclusions 
 

In this paper, design-based and Bayesian analyses of aggregated data are discussed. 

Design-based estimators are simple and easy to calculate, but the sample-dependent 

aggregation is not easy to consider in the analysis. As an alternative to the design-based 

analysis, the Bayesian analysis is discussed. Its main advantage over the design-based 

approach is that it can accommodate the variation due to the sample-dependent 

aggregation. 

It is also discussed that in disseminating aggregated data using the (n,p)-rule the 

disseminator needs to release the level of p employed in the aggregation and the size of 

aggregates; otherwise, reasonable statistical analysis of the data may not be possible. 
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Abstract 

 

The technique of micro-aggregation is widely used in Official Statisticsofficial statistics to reduce 

the risk of identity disclosure.  Micro-aggregation implies loss of information. In order to minimise 

the loss of information while protecting confidentiality of individual data, we present here a 

Bayesian method of optimal multivariate micro-aggregation by minimising the Hellinger’s distance 

criterion between the two posteriors based on the original and the micro-aggregated multivariate 

normal data. 

 

 

1.  Introduction                                                                                 
 

One of the main problems that National Statistical Offices face when disseminating 

information to the public is that they are not allowed to deliver, even anonymous 

individual records, if there is any possibility of direct or indirect identification of 

individual units. This is particularly true for business data. Their task is to protect the 

individual data from what Duncan and Lambert (1989) have called ‘the risk of identity 

disclosure’. This basic requirement of Official Statistics frequently has negative 

implications in pursuing statistical studies and thus researchers complain about the lack of 

microdata. Duncan and Pearson (1991) state that ‘a number of social science research and 

public policy studies could be pursued if the present tension between access and 

confidentiality were better resolved’. For more on this topic see also Fienberg (1994). 

 

In order to resolve the above problem several statistical techniques have been proposed for 

identity protection. These techniques can be classified, as in McGuckin and Nguyen 

(1988), into three main categories: (a) noise introduction, (b) data swapping and (c) micro-

aggregation. In category (a), an error term with mean zero and known variance is added to 

each response variable in all records in the microdata file. In category (b), new synthetic 

records are constructed by switching blocks of information. In category (c), clusters of 

similar ‘structure’ are formed and then the averages of all records in each cluster form the 

micro-aggregate records. 
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Two additional techniques, not entirely belonging to one of the above categories but often 

used in practice, are the following: The ‘data suppression’ technique, where entire records 

are suppressed, and the ‘recoding method’, where new larger categories are formed by 

collapsing categories of one or more qualitative variables in the original microdata file. 

 

It is useful to mention here a more recent method that unifies the above categories. This is 

the matrix-masking technique of Duncan and Pearson (1991). A triplet of matrices  (M)  = 

(A, B, C), called the mask, is used to transform the original microdata file  X  into the 

masked microdata file  X(M)  = A X B + C.  The matrices  A, B  and  C  have elements that 

are either constants or random variables, and they are not necessarily independent of  X.  
The problem of course is how to choose the mask  (M)  in order to preserve in  X(M)  the 

maximum possible information from  X  while protecting confidentiality. 

Methods, such as those described above, quite often suffer from several defects. Firstly, 

they do not always provide satisfactory assurance that confidentiality will be preserved, 

especially with asymmetrical data distributions such as those found in the field of business 

statistics. Secondly, they introduce bias in the estimation of certain parameters (Adam and 

Wortmann, 1989). An additional defect is that the correlation structure of the original 

microdata can be seriously distorted. 

 

The idea of micro-aggregation had been introduced in Eurostat by Photis Nanopoulos in 

1991 as an attempt to solve the confidentiality problems in business panels. In a paper 

presented in the Statistics Canada Symposium by Defays and Nanopoulos (1992), it was 

proved that optimal k-size aggregates can be obtained by hyperplanes that might be chosen 

to be perpendicular to the lines joining the centres of gravity of each pair of k-size clusters. 

In a second paper, Defays et al. have generalised and improved the algorithm for these 

results. The criterion used for optimal partitioning in the above papers was the usual 

minimisation of the within-group Euclidean squared distance, a method often applied in 

the area of unsupervised learning and clustering, see Duda and Hart (1973), pp. 211–228. 

 

The above technique is one of the matrix-masking type, with  B = I, C = 0  and  A  

depending on the data set  X.  But, since Euclidean distance takes into account neither 

different variabilities among the components of the records nor their covariance structure, 

it is a good partitioning criterion for isotropic data only. 

 

What we propose here is to apply a Bayesian approach and minimise a measure of distance 

between two posterior distributions conditional on  X  and  X(M)  respectively. 

 

 

2.  Micro-aggregation with multivariate normal data 
 

Since the rules do not permit the transmission of aggregated data when the number of 

aggregated records is less than a threshold value  k0  (in most countries k0  = 3), we 

propose to apply this rule and replace individual data by averages of small aggregates. The 

problem is to partition the whole data set into clusters with sizes that satisfy the above 

constraint, while preserving the statistical information content of the original data set as 
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much as possible. The problem of assessing the associated risk of identity disclosure is not 

considered here as its study needs more contextual specifications. But, since increasing the 

cluster-size decreases the risk of identity disclosure, clusters of greater size have to be 

taken if we feel that some individuals are at a high risk of been identified. For this kind of 

problem, see Omori (1999), Samuels (1998) and Fienberg and Makov (1998). 

 

Suppose that the microdata file consists of n individual records  xi  (i  =  1,…,n).  Each  x  

is a d-vector  (x1,…, xd)
T  that has a multivariate Normal distribution with mean  µ  and 

precision matrix  r.  Both mean  µ  and  r  are considered unknown random quantities. The  

x’s,  conditional on  µ  and  r,  are independent. The prior for  µ  and  r  is taken from the 

conjugate family, i.e. the multivariate Normal-Wishart family of distributions. Jeffreys’ 

non-informative prior will be also considered as a limiting case of Normal-Wishart 

distributions. Suppose now the data set  X  = {xi, i  =  1,…,n}  is partitioned into groups  Gl  

(l  = 1,…,L)  with  kl  elements respectively. The mean of the group  Gl  forms the 

aggregate datum  lx   considered to have multiplicity  kl.  The set so derived is denoted by 

X(M)   =  {( lx ,  kl),  l  = 1,…,L)}. 

 

The group means  lx   simply serve as approximations to the original  x’s  that belong to 

the same group  Gl.  Therefore we shall keep the independence property of the original  x’s 

for all  kl  records which have been set equal to  lx .  Consequently, when constructing the 

likelihood functions, both samples  X  and  X(M)  will have the same size  n. 

 

The problem is to divide the original data set  X  in such a way that the posterior 

distribution of  θ  = (µ, r),  based on the masked data set  X(M),  will be as ‘close’ as 

possible to their posterior distribution based on the original data set  X. 

 

 

3.  Distances between distributions 
                                                                                  

There are several measures of proximity, distance or divergence between two probability 

distribution functions  F1  and  F2  in the literature. McLachlan (1992) p. 22, following 

Krzanowski (1983), classifies them into two major categories: (a) measures based on 

information theory ideas and (b) measures based on Bhattacharrya’s measure of ‘affinity’ 

between two distributions. Assuming that the two distribution functions  F1  and  F2  admit 

densities  f1  and  f2  respectively with respect to some measure  ν  we have: 

 

(1) Kullback-Leibler measure of divergence 

∫= ,)}(f/)(log{)(),( 21121 νθθθ dffFFJ   

(1) 

  

 

 

And 
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 (2) Hellinger’s distance 
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where  ρ  is Bhattacharyya’s measure of affinity defined by 
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In many cases  J  and  H  provide equivalent results. In this paper the optimality criterion 

we chose is minimising Hellinger’s distance  H(F1, F2),  or equivalently maximising 

Bhattacharyya’s measure of affinity  ρ. 

The optimal partitioning of the original data set  X  will be derived by maximising the 

measure of affinity  ρ  between the two posterior distributions of  θ  = (µ, r),  the first 

conditional on the full data set  X,  and the other conditional on the masked data set  X(M)  = 

{( lx , kl),  l  = 1,…,L} corresponding to a partition of  X.  Thus, we have to maximise with 

respect to the partition  G  = {G1,…,GL}  the quantity 
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Distributional assumptions 

Given the mean  µ  and the precision matrix  r ( = Σ-1),  the  x’s  are independent,  Nd(µ, r)  

distributed random  d-vectors. 

The joint prior for µ and r is as follows: 

(a) Using a Normal-Wishart prior 

Given the precision matrix  r,  the mean  µ  is  Nd(µ0, n0r)  with  n0 > 0,  and the 

precision matrix  r  has a Wishart distribution with degrees of freedom  α0  (α0 > d-1)  

and ‘precision’ matrix  τ0.  Specifically, cf. De Groot, (1970), pp. 177-179, or Robert 

(1994), pp. 151-155, we have: 

)},(exp{||||)( 02

12

1

2
0

00

rtrrcrp

d

ττ

αα

−=
−−

 
 

(5) 

where  

.)(2

1

1
2

14

)1(

2 0

0

−

=

−+

−












Γ= ∏

d

j

j

ddd

c
α

α

π  

 

Now, the two posterior distributions of  (µ, r),  given the data set  X  or the data set  

X(m)   respectively, are again multivariate Normal-Wishart with parameters: 

µj   =  
j

j

n

nmn +00µ
, nj  = n0 + n, αj  = α0 + n, 

and 

τj  = τ0 + Sj + 
nn

nn

+0

0 (mj — µ0)(mj — µ0)
T,    j=1, 2, 

 

(6) 

where  

m1  = x ,   and   m2  = ][mx   = x , (7) 
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Note that S1 and S2 are like the total and between-group scatter matrices in a one-way 

MANOVA setting. Since from the above we have  m1  = m2, we also have: 

µ1  =  µ2  ≡ µ*,        n1  = n2 ≡ n*,        α1  = α2 ≡ α*. 

In addition 

τ1 - τ2 = S1 - S2 ≡≡≡≡ S3, (10) 

where  

,))((
1

3 ∑ ∑
= ∈

−−=
L

l Gx

T

lili

li

xxxxS  
 

(11) 

the within-group scatter matrix. 

Introducing the above results into (4) we get: 

drdrWrWrnNrnN dddd µταταµµµµρ 2

1

22112211 )},|(),|(),|(),|({∫∫=  
 

drdrWrWrnN ddd µταταµµ 2

1

21 )}*,|()*,|(){**,|(∫∫=  

drrWrW dd
2

1

21 )}*,|()*,|({ τατα∫=  

and finally, 
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(12) 

where  α*  = α0 + n.   Since  α*  does not depend on the partition, we can take the  

α*-th root of the above result and get the following expression for the modified 

measure of affinity  ρ*: 
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(13) 

with the last equality based on the fact that τ1 and τ2  are positive definite symmetric 

matrices. 

If  λj  (j  = 1,…,d)  are the eigenvalues of the positive definite matrix   τ1
-1
τ2,  then the 

eigenvalues of  I + τ1
-1
τ2  are  1+ λj  (j  = 1,…,d),  and therefore from the third 

equality above the criterion  ρ*  becomes: 
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(14) 

(b) Jeffreys’ non-informative prior 

Jeffreys’ non-informative prior for  (µ, Σ),  where  Σ  = r-1,  is of the form: 

p d( , ) | | .( )µ Σ Σ= − +1
  

(15) 

This prior can be taken as a limiting case of the corresponding Normal-Inverse 

Wishart prior for (µ, Σ)  when the matrix  τ0  → 0,  α0 → 0  and  n0 → 0.  With such a 

prior the measure of affinity  ρ*  becomes: 
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(16) 

The above result could also be taken by realising that when the sample size  n  is very 

large,  τ1 ≈ S1  and  τ2 ≈ S2.  Consequently the result (14) holds also here with  λj   (j  = 

1,…,d)  being the eigenvalues of  S1
-1

S2.  It must be mentioned here that in this case 

the number of eigenvalues that are different from zero is:  m  = rank(S2)  = min{d, L-

1}.  Since  L  is generally very large,   m  = d. 

 

 

4. Optimal partitioning by hyperplanes in Rd           
                               

In the following we consider the case of equal groups, i.e. when  k1  =...  = kL  = k.  In 

addition we will work with the result (16) and assume that the data points  xi   are ‘typical’ 

in Rd,  in the meaning that the conditions, in Lemmas 4.1 and 4.3 bellow, that characterise 

the optimal partition will be satisfied. 

Lemma 1.   The measure of affinity  ρ*  in (16) is maximised when  λ1   =...  = λd  = λ*  

with  λ*  the maximum possible value. 

Proof: To maximise (16) we set the constraint  Πλj = c, where c is a positive constant. 

The relation  S1  = S2 + S3,  with  S1,  S2  and  S3  positive definite, implies that the 

eigenvalues of  S1
-1

S2  are in the interval  (0, 1].  Thus,  c  also has to be in the interval (0, 

1].  Applying the Lagrange multipliers method, we can maximise the quantity  ρ*  under 

the above constraint, and find that  ρ*  is maximised when  λ1   =...  = λd  = λ,  with  λ  = 

c
1/d.   Then the measure of affinity  ρ*  becomes equal to  {2 λ /(1 + λ)}d/2.  Since this is 

an increasing function of  λ  in the interval  (0, 1],  the optimal value for   ρ*  is given by 
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(17) 
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with  λ*  the highest possible value.             

Lemma 2.   The measure of affinity  ρ*  in  (16)  remains the same when we apply the 

linear transformation  z  = S1
-1/2 x  to the original data set  X. 

Proof: This follows from the last equality in the result (16).          

It is interesting to note that Hellinger’s distance is invariant to linear transformations, and 

more generally to any one-to-one transformation, of the data.  The transformed data set 

will be denoted  Z. 

Lemma 3.   The between-group scatter matrix  S2  that corresponds to the optimal partition 

satisfies the following relations: 

,*)( 2

1

12
2

1

1 ISSSi λ=
−−

 
 

,*)( 12 SSii λ=   

ISSSSSiii *)( 2

1

12
2

1

12

1

1 λ==
−−

−
 

 

with  λ* ∈ (0, 1]. 

Proof: We prove only the first one.  Let  λj  (j  = 1,…,d)  be the eigenvalues of the matrix  

H  = S1
-1/2

S2S1
-1/2.  The argument in Lemma 1 leads again to the conclusion that for the 

optimal partition we have  λ1 = … = λd = λ*.  Let now  Γ  be the matrix of eigenvectors of  

H.  Thus,  Γ
T
 H Γ  = λ*I  and therefore  H  = λ*I.            

Remark.   Since the eigenvalues  λj  (j  = 1,…,d)  represent variances of group means, it 

is useful to mention here one of the main conclusions in Defays and Nanopoulos (1992) 

and in Defays et al (2001).  In the special case of univariate data it is shown there, that in 

order to maximise the between-group sum of squares, the extreme points of any group 

should not be within the range of values of another group. In other words, the group 

ranges should not overlap each other. 

Theorem.   The optimal partition that maximises (16) is obtained by partitioning the data 

set  X  by hyperplanes perpendicular to the eigenvectors of  S1.  The number of cutting 

hyperplanes has to be the same for all eigenvectors. 

Proof: By Lemma 3 the optimal partition is characterised by the equation:  S1
-1/2

S2S1
-1/2  = 

λ*I.  Let  G  = {G1,…,GL}  be an arbitrary partition.  The eigenvalue  λj  ( = λ*  for the 

optimal one) is the variance of the projections of  lz   = S1
-1/2

lx    (l  = 1,…, L) onto the j-th 

axis  of the coordinate system.  By taking into account the previous remark, the variance  

λj  can be maximised when separating the groups by hyperplanes perpendicular to that 

axis.  The larger the number of the hyperplanes that cut the j-th axis perpendicularly, the 

larger the λj.  Since for the optimal partition all  λ’s  have to be equal to each other, the 

symmetry of the problem implies that the number of cutting hyperplanes has to be the 

same for all axes.          
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Abstract 

      
This paper employs the national longitudinal survey of youth in the United States to study the birth 

process. We develop a simultaneous equations model with seven endogenous variables: four birth 

inputs (maternal smoking, maternal drinking, first trimester prenatal care, and maternal weight gain), 

three birth outputs (gestational age, birth length, and birth weight), and 24 exogenous variables. The 

estimation is Bayesian. Separate analyses are performed on five different groups: Main Whites, 

Supplemental Whites, Blacks, Hispanics, and Native Americans. In all groups, we find sizeable 

correlation between the disturbances in the four input and three output equations and among output 

disturbances. For gestation, the effect of maternal weight is positive and substantial, while the effect of 

maternal age is consistently negative and substantial for Main Whites, Blacks, and Hispanics. The 

effects of smoking, drinking, prenatal care, and weight gain vary in sign and magnitude across the 

groups. For birth length, male infants are on average longer. The effect of maternal height is 

noticeable but small in magnitude, and the effect of maternal weight is noticeable only for Main 

Whites. The effect of smoking is consistently negative, and substantial for Main and Supplemental 

Whites. The effects of drinking and prenatal care vary across the groups. Both weight gain and 

gestation have consistently positive effects. For birth weight, male infants are on average heavier 

except Hispanics. The effect of maternal height is noticeable for Main Whites and Hispanics. The effect 

of maternal weight is noticeable and consistent across the groups. The effect of smoking is consistently 

negative, and substantial for Main and Supplemental Whites. The effects of drinking and prenatal care 

are small and vary across the groups. Weight gain has a small positive effect except Supplemental 

Whites. The effect of gestation is positive and fairly comparable across the groups. 

 

 

1.  Introduction 
 

This paper draws on two disparate literatures on birth weight (BW): economics and 

biomedical. The primary distinguishing feature between the two is that the economics 

literature, unlike the biomedical literature, views many aspects of maternal behaviour, 

together with birth weight and related birth outputs, as endogenous to the birth process, i.e., 

they are determined or explained within the system under analysis. Endogenous variables are 

not even conceptually controlled by the researcher. In contrast exogenous variables are 

determined outside the system. The distinction tells a lot about the researcher’s view of the 

world, and it is one of the first things to be decided. It has major implications for statistical 
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modelling, and more importantly, on the questions being asked. 

Birth weight is probably the single most important indicator of infant health (e.g. see 

Institute of Medicine, 1985). It is also a significant predictor of infant mortality, morbidity, 

coronary heart disease, neurodevelopmental handicaps, and learning disabilities (e.g. see 

Illsley and Mitchell, 1984 and Poirier, 1998). Birth weight is the result of two processes: (i) 

the gestational age (G), and (ii) the intrauterine growth rate of the foetus. Gestational age is 

usually assumed to be approximately two weeks shorter than the period elapsed since last 

normal menstrual period. In this paper we treat both birth weight and gestation as 

endogenous in the birth process. 

 

Miller and Merritt (1979) forcefully argue that measurements of crown-heel length, head 

circumference, mid-arm circumference, and skin folds or other indices of body fat are also 

important data that should be recorded together with birth weight and gestation for the 

purpose of predicting future morbidity outcomes. In this paper we work with three birth 

outputs: birth weight, gestation, and birth length (BL). 

 

Economists view birth weight in the context of a process in which the mother acts as a 

decision-maker striving to achieve goals subject to constraints. Maternal behaviour provides 

a variety of inputs into the production of birth outcomes. Such formalism is not the goal 

here, but the purposeful behaviour of the mother in striving for a healthy infant creates 

demands for health inputs (e.g. whether to smoke, drink, use drugs, obtain prenatal care, 

etc.) into a three-output birth production function (BPF). The BPF represents the technical 

(biological/physiological) relationship between the birth outputs gestation, birth length, and 

birth weight and the birth inputs smoking (S), drinking alcohol (D), seeking prenatal care in 

the first trimester (PC), and proper maternal nutrition as measured by weight gain (WG) net 

of birth weight. The inputs are determined by health input demand functions which describe 

input choices subject to the constraints the mother faces. The essence of the economist’s 

view is that the mother is attempting to do the best that she can for herself and her child 

subject to the multiple constraints she faces. 

 

The endogeneity of inputs in the BPF is the important distinguishing statistical feature 

between the economists’ models and those of other social scientists and epidemiologists. It 

builds on the seminal work of Grossman (1972) who introduces the idea of a health 

production function relating health outcomes, via physiological or biological processes, to 

health inputs chosen by the individual. Such inputs are generally desired, not because they 

directly provide utility, but because they have an instrumental role to play in producing 

goods (e.g. health) that are valued directly. 

 

2.  Data 
 

The statistical window to be employed in this paper is quite ambitious compared to 

counterparts in the biomedical literature on birth weight, and so we employ a very rich data 

set commonly used by social scientists, the National Longitudinal Survey of Youth (NLSY) 

in the United States for implementation. 
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The NLSY is an ongoing study of 12 686 young men and women aged 14 to 21 as of 1 

January 1979. Over 90 % of these respondents have participated in an annual personal 

interview, approximately one hour in length, since 1979. Individuals are followed after 

leaving their baseline household. There is relatively little attrition. 

 

The data for this paper are drawn from the NLSY Merged Child-Mother file (NLSCM) for 

1994 (CD-ROM). Where necessary, additional variables are constructed using the data from 

the NLSY main file for 1994 (CD-ROM). The price indices on cigarette, alcohol, medical 

services and food are obtained from the consumer price index database of the Bureau of 

Labour Statistics. 

 

The NLSCM contains data for each child born to a woman in the original NLSY survey, as 

well as a selection of variables from the NLSY. Blacks, Hispanics, and the poor were over 

sampled in the NLSY. Of 6 283 women who began the survey in 1979, 4 599 had given 

birth to 10 042 children by 1994. Our sample of births is obtained by imposing the 

constraints that the birth order of the child (G0005800) is 1 and the birth year (G0005700) is 

after and including 1979. We also drop observations if they miss exogenous variables such 

as income or income exceeds USD 100 000, AFQT scores, etc. Finally, we drop 

observations if they miss endogenous variables. 

 

In this paper, we analyse racial/ethnic groups separately. Racial/ethnic groups are defined by 

the mother’s self-reported identification. We examine five racial/ethnic groups: Main 

Whites, Supplemental Whites, Blacks, Hispanics, and Native Americans. 

 

We choose to analyse only singleton first-born live births, leaving aside sample selection 

problems arising from parity considerations and abortions. There were 3 648 live singleton 

first births to White, Black, Hispanic, and Native American women between 1979 and 1994 

in the NLSY. We dropped 221 births to women in the military and 28 to women no longer 

living in the United States. Births to women in the military are sufficiently different from 

births in the civilian population, so we do not want to contaminate our much larger number 

of civilian births. The births to emigrants were dropped because of their small sample sizes 

and our expectation that they should not be combined with our other data. This left 3 399 

observations for our target sample. 

 

As in most empirical studies, missing observations are a reality. 35.4 % of our target sample 

was dropped due to missing observations on at least 1 of our 24 exogenous variables — 

household income being the primary culprit. More disturbingly, another 6.9 % of the 

observations have exogenous variable data, but are missing data on one or more of the seven 

endogenous variables. This leaves a total of 1 962 observations with complete data (57.7 % 

of our target sample).  Missing data is more of a problem for the Black, Hispanic, and Native 

American samples than for the White samples. Also, the Supplemental White sample has a 

slightly more severe missing data problem than the Main White sample.  For more details, 

see Li and Poirier (2000, Table 1). 
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Our choice of the 24 exogenous (conditioning) variables is guided by the existing literature. 

Variables x1 is the intercept term. Variables x2 - x6 cover basic physical characteristics (the 

gender of the infant, the age and size of the mother) which we expect to be very important in 

the birth output equations (
1
). Variables x7 - x12 capture regional and temporal effects plus 

the intelligence and family income of the mother (
2
). Variables x13 - x25 capture health 

insurance status and a variety of socioeconomic measures of the mother’s family 

background. Variables x7 - x25 are risk factors that causally are quite far removed from the 

biological event of low birth weight. We expect these variables to be important in the input 

equations, but not in the biologically-based output equations. 

 

One variable notably missing is the marital status of the mother or whether she is living with 

the father. Clearly such measures are endogenous, and furthermore, reflect an endogenous 

decision by the father as well. Just as we are not modelling fertility (see footnote 1), we are 

not trying to model the marriage/cohabit decision. Implicitly we are conditioning on the 

decisions to get pregnant and not to have an abortion. We do not feel a latent distribution, 

say, of potential birth weight for infants not conceived, or conceived but aborted, is of great 

interest. We are no more willing to condition on the marriage/cohabit decision than to 

condition on the decision to smoke. So we have marginalised out the marriage/cohabit 

decision from our model. Note, however, the presence of the father can be reflected in 

variables such as the household income (x12) and the number of adults in household (x15). 

Also note that there are many missing observations for whether the father is present in the 

household. 

 

 

3.  Modelling 
 

Following the strategy outlined in Poirier (1995, Chapter 10), we choose a highly over-

identified specification for our maintained hypothesis H*, and a less restricted specification 

HA as an alternative hypothesis that we expect will not lead to rejecting H*. Our prior reflects 

this viewpoint. In Section 4.1 we test these over-identifying restrictions. 

 

Our model specification is the same as used in Li and Poirier (2001). Our distribution of 

interest, for singleton first-born live births, is the joint distribution of four birth inputs 

(smoking, drinking, prenatal care, and weight gain) and three birth outputs (gestation, birth 

length, and birth weight), given the exogenous variables x. We choose a fairly large 155-

dimensional parametric window to model this seven-dimensional conditional distribution of 

endogenous variables z. 

 

Consider a sample of T independent singleton first-born live births indexed by the 

subscript i. Let [S i
*
, D i

*
, PC i

*
]′ (i = 1, 2, ..., T) denote latent variables underlying the 

                     

(
1
) We are not trying to explain fertility, and so we are not trying to explain the mother’s pregnancy. Hence, variables like 

maternal age (x6) are properly treated as exogenous in our analysis. 

(
2
) None of the 81 Native Americans in Li and Poirier (1999) lived in the Northeast. Therefore, the specification for Native 

American mothers contains only 23 exogenous variables plus the constant term in the S, D, PC, and WG equations. 
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binary birth inputs [Si , Di , PCi]′ = [1(S i
*
), 1(D i

*
), 1(PC i

*
)]′ (i = 1, 2, ..., T), where 1(•) 

denotes an indicator function which equals unity if the argument is positive and equals 

zero otherwise. For estimation, we partition the endogenous variables into inputs zi1 and 

outputs zi2 : zi1
*
 = [S i

*
, Di

*
, PC i

*
, WGi]′, zi1 = [Si , Di, PCi, WGi ]′, zi2 = [Gi , BLi , BWi ]′ (i = 

1, 2, ..., T). Let xi (i = 1, 2, ..., T) denote K×1 vectors of exogenous variables. 

 

Suppose the four inputs are generated from the following specification 

 

where ∆1 = [∆S , ∆D , ∆PC , ∆WG ] is K×4. Also suppose the three birth outputs are related to 

zi1 = [Si , Di , PCi, WGi]′ as follows: 

 

 

 

 

where εi = [εi1, εi2]′xi ∼ i.i.d. N7(07, Σ) (i = 1, 2, ..., T), Γ2 is nonsingular 

 

,   

  

  

  

  

  = 

BW ,WG BL ,WG G ,WG 

BW , PCBL , PCG , PC
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1
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 -  - 1
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

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 0 
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
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






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∆∆∆

∆ δδ
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        (5) 

 

where , ]'  ,  ,    ,  [   =   j , 4j , 3j , 2j , 1j δδδδδ  and ∆*, j = [δ7, j , ..., δ12, j ]′ , (j = G, BL, BW). The 

coefficients in ∆*, j (j  = G, BL, BW) are set to zero under our maintained specification.  

Finally, Σ = [Σij] (i, j = 1, 2) is partitioned into the four birth inputs and the three birth 

,  + x ' = z 1ii1
*
1i ε∆        (1) 

, ' +  'x +  'z =  'z 2i2i11i22i ε∆ΓΓ      (2) 
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outputs. 

 

The specification in equations (1) - (5) warrants a few comments. It reflects a view of the 

world in which reduced form (equation (1)) is postulated for the four inputs (smoking, 

drinking, prenatal care, and weight gain), and then a triangular view (equations (2) and (4)) 

of the three outputs (gestation, birth length, and birth weight) is postulated in which 

gestation is determined based on the four inputs, and then birth length and birth weight are 

jointly determined as functions of the four inputs and gestation. The three output equations 

are identified by zero restrictions on maternal weight (x6) in the birth length equation, and 

on maternal height (x5) in the birth weight equation. The model is not recursive because Σ 

is permitted to be non-diagonal. The model is non-linear because of the jointly determined 

dummy endogenous variables (smoking, drinking, and prenatal care). The specification of 

numerous zero restrictions on ∆2 in equation (5) ensures that the order condition for 

identification is satisfied. 

Our prior is proper, but moderately diffuse. We use the same prior for all racial/ethnic 
groups. The estimation of our model extends the work by Chib and Greenberg (1998) and 
Li (1998), and is described in Li and Poirier (2000, Appendices A.3-A.4). To give a 

quick, visual indication of the posterior mass around the means, we indicate the relative 

size of the posterior mean to the posterior standard deviation by the border of the table cell 

as described in Table 1. 

 

 

4.  Empirical results 
 

4.1.  Evidence of structure 
 

We investigate whether our output equations reflect a biological structure in three related 

ways. First, the logarithmic Bayes factor in favour of our maintained specification H*: ∆*,G  = 

∆*,BL  = ∆*,BW  = 06 versus the alternative HA: ∆*,G 06 or ∆*,BL 06 or ∆*,BW  06 is overwhelming 

for all groups (Li and Poirier, 2000, Table 10). Second, the predictive densities for all 

endogenous variables differ little across H* and HA (Li and Poirier, 2000, Table 11). Third, 

under HA the six additional variables x7 - x12 add relatively little to the three output equations 

(Li and Poirier, 2000, Table 12). Because of these results, subsequent results are conditioned 

upon H*. 
 

4.2.  System results 

 

Our treatment of simultaneity, in contrast to most of the biomedical literature, is a 

distinguishing feature of our model. While our window imposes triangularity, it does not 

impose a full recursive specification. Our prior for Σ is centred over a diagonal matrix 

(supporting the use of single-equation methods), the need for simultaneous equations 

techniques is apparent in our posterior results (Li and Poirier, 2000, Table 13). Although the 

correlations between input disturbances and the birth weight disturbance are fairly small for 

most groups, this should not be interpreted as justifying simply running a regression for the 
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birth weight equation. The correlation between the disturbances in the gestation and birth 

weight equations is sizeable. Indeed, as Li and Poirier (2000, Section 4.6) note, the ordinary 

least squares results for the birth weight equation of Main Whites are substantially different 

from our posterior results. 

 

4.3.  Input equations 

 

Our interest in the parameters of the input equations is minimal compared to the output 

equations, and so we devote less attention to them. Tables 2a-2d contain the posterior 

(group-specific) and prior means and standard deviations for the elements of ∆1 under our 

default prior. Some results are not very surprising. For example, the posterior mass for the 

coefficient of the AFQT score variable in the smoking equation is negative and large relative 

to its standard deviation for all groups, except Hispanics. On the other hand, the coefficient 

of the AFQT score variable in the drinking equation is positive and large relative to its 

standard deviation for both the Main White and Supplemental White groups. Note that in 

both cases the priors for the coefficients are located away from zero, but in the latter case, 

the prior posterior locations differ in sign. Clearly our priors are not dominating the data. 

 

The price indices do not appear to serve very well as instruments in any of the input 

equations for any of the groups. But most other variables among x7 - x25 have substantial 

posterior mass away from zero in some equations for every group suggesting they satisfy at 

least one requirement of a legitimate instrumental variable for the output equations. 

 

4.4.  Output equations 

 

The output equations are of prime importance. They describe how birth inputs together with 

the biological size of the mother are transformed into birth outputs describing the physical 

characteristics of the infant. We discuss each of the three equations in turn, presenting 

posterior results under the default prior. When discussing maternal height and weight we 

take into account both their effects through body mass index [BMI = weight in kg/(height in 

m)
2
] and their linear effects. The posterior means and standard deviations of the partial 

derivatives of the exogenous variable effects of maternal height and weight are reported for 

each output equation. 

 

The posterior results for the gestation equation are reported in Table 3. The pictures 

regarding the effects of exogenous variables differ somewhat across groups. Although BMI, 

maternal height, and maternal weight do not appear to matter much individually for Main 

Whites, Blacks, and Hispanics, the net marginal effect of maternal weight is substantial and 

similar across the groups. In contrast, the same three variables appear to have separate 

effects for Supplemental Whites and Native Americans, which yield no net effects for 

Supplemental Whites, and a negative net effect of maternal height for Native Americans. 

The posterior effect of being male is only noticeable for Main Whites. The posterior effect of 

maternal age is consistently negative and noticeably shifted away from the origin for Main 

Whites, Blacks, and Hispanics. 
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The posterior mean effects of the three endogenous binary inputs vary in sign and magnitude 

across the groups. Of the 15 (3Η5) cases, a posterior mean is more than twice its standard 

deviation only twice. There is more consistency in the effects of weight gain on gestation 

across the groups, and in most cases the effects of weight gain are small. 

 

The posterior results for the birth length equation are reported in Table 4. Similar pictures 

emerge regarding the effects of exogenous variables across the groups, except for the large 

standard deviations in the small sample of Native Americans. Clearly, the birth lengths of 

male infants are on average longer. The net marginal effect of maternal height on birth 

length is noticeable but small in magnitude. The net marginal effect of maternal weight is 

noticeable only for Main Whites. 

 

The posterior mean effects of the three endogenous binary inputs are more similar across the 

groups in the birth length equation than they are in the gestation equation. The posterior 

mean effect of smoking on birth length is consistently negative across the groups, and larger 

than its standard deviation for Main and Supplemental Whites. The posterior mean effects of 

drinking and prenatal care on birth length vary across the groups. Both weight gain and 

gestation have positive mean effects on birth length, which are quite consistent across the 

groups. 

 

The posterior results for the birth weight equation are reported in Table 5. Similar pictures 

emerge regarding the effects of exogenous variables across the groups, except for the large 

standard deviations in the small sample of Native Americans. Clearly, male infants are on 

average heavier, except in the case of Hispanics. The net marginal effect of maternal height 

on birth weight is noticeable for Main Whites and Hispanics. The net marginal effect of 

maternal weight on birth weight is noticeable, and consistent across the groups. 

 

Like in the birth length equation, the posterior mean effects of the three endogenous binary 

inputs are more similar across the groups in the birth weight equation than they are in the 

gestation equation. The posterior mean effect of smoking on birth weight is consistently 

negative across the groups, and larger than its standard deviation for Main and Supplemental 

Whites. The posterior mean effects of drinking and prenatal care on birth weight vary across 

the groups, and are generally small. Weight gain has a small positive mean effect on birth 

weight for all groups except Supplemental Whites in which case it is negative and larger in 

absolute value than its posterior standard deviation. The posterior mean effect of gestation 

on birth weight is positive and fairly comparable across the groups. 

 

4.5.  Prediction 

 

Given out-of-sample values of the exogenous variables x, the predictive density for the out-

of-sample of = z~
*  

]'W B
~
 L,B

~
 ,G

~
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~
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*
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predictive distribution for birth outputs, obtained from equation (6) by integrating out inputs: 
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The univariate predictive densities for gestation, birth length, and birth weight are shown in 

Figures 1-3, respectively. These figures depict the univariate predictive output densities for 

each group and the very diffuse prior predictive density embodying only the informative 

prior and no data. 

 

 

5.  Discussion 
 

It is well acknowledged that birth weight is probably the single most important indicator of 

infant health. In this paper, we focus on explaining the birth outcomes such as gestation, 

birth length and birth weight using a simultaneous equations approach. On the other hand, 

the more interesting and ultimately relevant question to ask, from a society viewpoint, is 

what factors affect children’s attainment later in life. Our modelling framework turns out to 

be quite useful in answering questions like this. We conjecture that birth weight and related 

birth measurements are the intervening variables in explaining children’s development later 

in life, and we plan to investigate further in future work. 
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7.  Tables 
 

Table 1:  Notational conventions in subsequent tables 

 

 

  Absolute value of mean between one and two standard deviations 

 

  Absolute value of mean between two and three standard deviations 

 

  Absolute value of mean more than three standard deviations 

 

bold  Standard deviation equal to zero 
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Table 2a: Posterior means (standard deviations) of the effects of maternal biological 

characteristics on birth inputs under H* 

 

 
 

  S  D  PC  WG S  D  PC  WG 

  Main White Black 

x1 Intercept -.2277 

(.1111) 

 .2007 

(.1006) 

 .8230 

(.1225) 

 11.77 

(.4960) 

-.6422 

(.1971) 

 -.2436 

(.1801) 

 .7437 

(.1863) 

 11.28 

(1.015) 

x2 Male child -.0336 

(.0851) 

 .0282 

(.0837) 

 .2040 

(.0982) 

 .1780 

(.3651) 

-.2098 

(.1346) 

 -.0685 

(.1252) 

 -.0234 

(.1313) 

 .6083 

(.6658) 

x3 Mother’s age — 

23yrs. 

.0083 

(.0222) 

 .0581 

(.0203) 

 .0530 

(.0269) 

 -.0854 

(.0994) 

.0012 

(.0390) 

 .0674 

(.0342) 

 .0848 

(.0373) 

 .1366 

(.1880) 

x4 Body mass 

index — 24 

.1161 

(.1467) 

 -.1351 

(.1343) 

 -.0673 

(.1660) 

 -.0833 

(.6882) 

.1970 

(.1510) 

 -.0213 

(.1323) 

 .1758 

(.1337) 

 -.4462 

(.7060) 

x5 Maternal height 

— 162cm 

.0359 

(.0423) 

 -.0208 

(.0394) 

 -.0208 

(.0491) 

 .0417 

(.1992) 

.0746 

(.0468) 

 .0001 

(.0410) 

 .0388 

(.0407) 

 -.1251 

(.2199) 

x6 Maternal weight 

— 63kg 

-.0390 

(.0542) 

 .0510 

(.0496) 

 .0180 

(.0612) 

 .0671 

(.2534) 

-.0731 

(.0561) 

 .0161 

(.0486) 

 -.0642 

(.0484 

 .2608 

(.2596) 

  Supplemental White Native American 

x1 Intercept -.3272 

(.2052) 

 .0638 

(.2001) 

 .5734 

(.2308) 

 10.20 

(1.017) 

.1204 

(.3035) 

 .0833 

(.3080) 

 .3478 

(.3435) 

 9.990 

(1.851) 

x2 Male child .2504 

(.1528) 

 .0712 

(.1533) 

 .0522 

(.1850) 

 .9329 

(.7692) 

.3487 

(.2487) 

 -.0095 

(.2449) 

 .7742 

(.2876) 

 -.1443 

(1.489) 

x3 Mother’s age — 

23yrs. 

-.0631 

(.0425) 

 .0013 

(.0396) 

 .1748 

(.0538) 

 -.3841 

(.1953) 

-.0736 

(.0848) 

 .2202 

(.0924) 

 .1547 

(.1078) 

 .2917 

(.5083) 

x4 Body mass 

index — 24 

-.3169 

(.2379) 

 -.1433 

(.2299) 

 .4587 

(.3329) 

 3.141 

(1.098) 

.1911 

(.4783) 

 .8289 

(.4649) 

 .9296 

(.4853) 

 1.976 

(2.638) 

x5 Maternal height 

— 162cm 

-.1017 

(.0676) 

 -.0525 

(.0660) 

 .1157 

(.0917) 

 .8819 

(.3130) 

.0613 

(.1481) 

 .2653 

(.1465) 

 .2531 

(.1542) 

 .5451 

(.8290) 

x6 Maternal weight 

— 63kg 

.1188 

(.0883) 

 .0455 

(.0855) 

 -.1584 

(.1212) 

 -1.087 

(.4093) 

-.0796 

(.1804) 

 -.3246 

(.1750) 

 -.3544 

(.1850) 

 -.6503 

(.9914) 
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   S  D  PC  WG 

   Hispanic 

x1 Intercept  -.0258 

(.2656) 

 .3534 

(.2444) 

 .3769 

(.2494) 

 11.00 

(1.343) 

x2 Male child  .0339 

(.1644) 

 -.0144 

(.1374) 

 .1402 

(.1434) 

 .3779 

(.7260) 

x3 Mother’s age — 23yrs.  -.0361 

(.0483) 

 .0131 

(.0381) 

 .0502 

(.0408) 

 -.4414 

(.2002) 

x4 Body mass index — 24  -.0212 

(.2697) 

 .0183 

(.2200) 

 .2392 

(.2424) 

 .9538 

(1.204) 
x5 Maternal height — 162cm  .0044 

(.0821) 

 .0130 

(.0671) 

 .0709 

(.0720) 

 .3861 

(.3657) 
x6 Maternal weight — 63kg  .0261 

(.1041) 

 -.0137 

(.0854) 

 -.0920 

(.0936) 

 -.2943 

(.4685) 
   Prior 

x1 Intercept  .0000 

(.4400) 

 .0000 

(.4400) 

 .0000 

(.4400) 

 10.00 

(2.640) 

x2 Male child  .0000 

(.4400) 

 .0000 

(.4400) 

 .0000 

(.4400) 

 .0000 

(2.640) 
x3 Mother’s age — 23yrs.  .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(18.00) 

x4 Body mass index — 24  .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(18.00) 

x5 Maternal height — 162cm  .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(18.00) 

x6 Maternal weight — 63kg  .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(18.00) 
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Table 2b: Posterior Means (Standard Deviations) of the Effects of Regional, Temporal, 

Intelligence and Income on Birth Inputs Under H* 

 

 
      

  S  D  PC  WG S  D  PC  WG 

  Main White Black 

x7 Northeast -.0641 

(.1401) 

 -.0591 

(.1277) 

 .2358 

(.1680) 

 .4640 

(.6803) 

.3781 

(.2334) 

 .1437 

(.2106) 

 -.0929 

(.2246) 

 .3435 

(1.239) 

x8 South -.0878 

(.1106) 

 -.4158 

(.1046) 

 -.0627 

(.1311) 

 .4300 

(.5148) 

-.3808 

(.1780) 

 -.3989 

(.1575) 

 -.0659 

(.1743) 

 -.3336 

(.9158) 

x9 West .0542 

(.1227) 

 -.1613 

(.1130) 

 -.1035 

(.1405) 

 .6132 

(.5843) 

.1991 

(.2553) 

 .0303 

(.2403) 

 .1536 

(.2708) 

 -1.155 

(1.408) 

x10 Calendar Time — (19)85 .1536 

(.0945) 

 .0345 

(.0786) 

 -.0990 

(.1066) 

 -.3975 

(.4104) 

.0948 

(.1659) 

 -.0647 

(.1383) 

 .0613 

(.1491) 

 -1.345 

(.8305) 

x11 (AFQT score / mean of 

same age) -1 

-.5445 

(.0781) 

 .2555 

(.0717) 

 -.0363 

(.0884) 

 -1.407 

(.3417) 

-.1936 

(.1723) 

 -.0163 

(.1474) 

 .1097 

(.1579) 

 -.1578 

(.8647) 

x12 Household income in $1 

000 — 25 

-.0028 

(.0031) 

 .0079 

(.0028) 

 .0103 

(.0036) 

 .0060 

(.0123) 

-.0042 

(.0057) 

 .0032 

(.0049) 

 .0018 

(.0056) 

 -.0225 

(.0288) 

  Supplemental White Native American 

x7 Northeast .4713 

(.2296) 

 .4313 

(.2203) 

 .0377 

(.2743) 

 1.031 

(1.083) 

.0000 

(.0000) 

 .0000 

(.0000) 

 .0000 

(.0000) 

 .0000 

(.0000) 

x8 South .1803 

(.2063) 

 -.0386 

(.1953) 

 .1396 

(.2451) 

 .2917 

(.9571) 

-.4757 

(.3275) 

 -.1877 

(.3337) 

 -.1193 

(.3915) 

 1.792 

(2.008) 

x9 West .0458 

(.2373) 

 .4093 

(.2256) 

 .0978 

(.2762) 

 2.436 

(1.111) 

.2280 

(.3929) 

 .0602 

(.4206) 

 .1241 

(.4813) 

 -.3904 

(2.409) 

x10 Calendar Time — (19)85 .1915 

(.3047) 

 -.1544 

(.2920) 

 .2762 

(.3225) 

 .9472 

(1.573) 

.3720 

(.3004) 

 -.2141 

(.2963) 

 -.5477 

(.3476) 

 -.1864 

(1.836) 

x11 (AFQT score / mean of 

same age) -1 

-.2285 

(.1574) 

 .4173 

(.1504) 

 .2574 

(.2039) 

 .7960 

(.7503) 

-.5711 

(.2575) 

 -.2343 

(.2709) 

 .2118 

(.3004) 

 .4115 

(1.501) 

x12 Household income in $1 

000 — 25 

-.0100 

(.0076) 

 .0060 

(.0070) 

 .0086 

(.0097) 

 .0090 

(.0345) 

-.0077 

(.0130) 

 .0158 

(.0138) 

 -.0034 

(.0142) 

 -.0524 

(.0765) 
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   S  D  PC  WG 

   Hispanic 

x1 Intercept  -.2193 

(.3276) 

 -.2729 

(.2946) 

 .4148 

(.3075) 

 2.058 

(1.618) 

x2 Male child  -.5856 

(.2922) 

 -.3954 

(.2478) 

 .2561 

(.2645) 

 .5980 

(1.399) 

x3 Mother’s age — 23yrs.  -.6129 

(.2758) 

 -.2699 

(.2384) 

 .1136 

(.2423) 

 .7121 

(1.324) 

x4 Body mass index — 24  -.4829 

(.2048) 

 .0141 

(.1579) 

 -.0095 

(.1781) 

 .8990 

(.8803) 
x5 Maternal height — 162cm  -.0628 

(.1804) 

 -.0243 

(.1521) 

 .1273 

(.1538) 

 1.641 

(.8220) 
x6 Maternal weight — 63kg  -.0072 

(.0070) 

 -.0009 

(.0051) 

 .0008 

(.0055) 

 .0117 

(.0287) 
   Prior 

x1 Intercept  .0000 

(.6223) 

 .0000 

(.6223) 

 .0000 

(.6223) 

 .0000 

(3.734) 

x2 Male child  .0000 

(.6223) 

 .0000 

(.6223) 

 .0000 

(.6223) 

 .0000 

(3.734) 
x3 Mother’s age — 23yrs.  .0000 

(.6223) 

 .0000 

(.6223) 

 .0000 

(.6223) 

 .0000 

(3.734) 

x4 Body mass index — 24  -.2000 

(3.000) 

 -.2000 

(3.000) 

 .2000 

(3.000) 

 .2000 

(18.00) 

x5 Maternal height — 162cm  -1.000 

(.4400) 

 -1.000 

(.4400) 

 1.000 

(.4400) 

 1.000 

(2.640) 

x6 Maternal weight — 63kg  .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(18.00) 
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Table 2c: Posterior Means (Standard Deviations) of the Effects of Insurance and 

Socioeconomic Characteristics on Birth Inputs Under H* 
 

  S  D  PC  WG S  D  PC  WG 
  Main White Black 

x13 No health insurance 

available 

.2664 

(.1257) 

 .0025 

(.1112) 

 -.1330 

(.1425) 

 .3154 

(.5580) 

-.2805 

(.2349) 

 .0502 

(.2042) 

 -.1130 

(.2124) 

 -1.171 

(1.170) 

x14 Missing health 

insurance 

availability 

-.1564 

(.1337) 

 .0121 

(.1247) 

 .0936 

(.1564) 

 .1454 

(.6595) 

.2619 

(.2526) 

 .3461 

(.2181) 

 .1666 

(.2141) 

 .8354 

(1.196) 

x15 Number of adults in 

household — 2 

.0290 

(.0580) 

 -.0205 

(.0545) 

 -.1201 

(.0665) 

 -.3854 

(.2788) 
.0195 

(.0591) 

 -.0447 

(.0542) 

 .0490 

(.0606) 

 .1798 

(.3035) 

x16 Number of quarters 

worked last year — 

3 

.0110 

(.0402) 

 .0489 

(.0348) 

 .0143 

(.0466) 

 .0119 

(.1816) 

-.0123 

(.0590) 

 .0713 

(.0513) 

 .0409 

(.0564) 

 .3348 

(.2881) 

x17 Number of maternal 

siblings — 4 

.0015 

(.0225) 

 -.0134 

(.0210) 

 -.0274 

(.0269) 

 .0358 

(.1036) 

.0261 

(.0247) 

 -.0041 

(.0216) 

 .0412 

(.0233) 

 .0878 

(.1205) 

x18 Grandmother’s 

education — 12yrs. 

-.0042 

(.0227) 

 -.0116 

(.0197) 

 .0139 

(.0263) 

 .0665 

(.0988) 

.0191 

(.0343) 

 .1025 

(.0309) 

 -.0012 

(.0309) 

 .3446 

(.1623) 

  Supplemental White Native American 
x13 No health insurance 

available 

.0342 

(.2212) 

 -.3887 

(.2057) 

 .3010 

(.2567) 

 3.343 

(1.074) 

-.0442 

(.2949) 

 .0090 

(.2956) 

 .1658 

(.3272) 

 -1.106 

(1.783) 
x14 Missing health 

insurance 

availability 

-.0305 

(.2377) 

 .3292 

(.2226) 

 -.3041 

(.2815) 

 -1.315 

(1.125) 

-.4918 

(.3892) 

 -.5810 

(.3966) 

 .0944 

(.4338) 

 2.462 

(2.271) 

x15 Number of adults in 

household — 2 

.1346 

(.1257) 

 .1741 

(.1145) 

 -.0813 

(.1497) 

 .0995 

(.5658) 

-.3236 

(.2002) 

 .1267 

(.1812) 

 .5260 

(.2928) 

 -.1144 

(1.010) 

x16 Number of quarters 

worked last year — 

3 

-.1101 

(.0697) 

 -.0224 

(.0656) 

 -.2206 

(.0927) 

 .3056 

(.3206) 

.0207 

(.1632) 

 -.3350 

(.1662) 

 -.2693 

(.2040) 

 -.9104 

(.9445) 

x17 Number of maternal 

siblings — 4 

.0267 

(.0386) 

 -.0178 

(.0344) 

 -.0626 

(.0443) 

 -.0917 

(.1666) 

-.0004 

(.0744) 

 .0784 

(.0817) 

 -.0009 

(.0979) 

 .1914 

(.4590) 

x18 Grandmother’s 

education — 12yrs. 

.0358 

(.0369) 

 .0404 

(.0356) 

 -.1554 

(.0526) 

 -.0347 

(.1732) 

-.0608 

(.0757) 

 .0543 

(.0844) 

 .0327 

(.0901) 

 .4149 

(.4874) 
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   S  D  PC  WG 

   Hispanic 
x13 No health insurance 

available 

 -.4102 

(.2523) 

 -.0203 

(.1920) 

 -.0524 

(.1955) 

 .9718 

(1.100) 
x14 Missing health insurance 

availability 

 .0136 

(.2665) 

 .0145 

(.2068) 

 .3449 

(.2084) 

 .4599 

(1.136) 
x15 Number of adults in 

household — 2 

 -.0302 

(.0709) 

 -.0394 

(.0601) 

 -.0339 

(.0589) 

 .1139 

(.3145) 
x16 Number of quarters worked 

last year — 3 

 -.1380 

(.0748) 

 .0980 

(.0597) 

 .1092 

(.0598) 

 .3822 

(.3154) 

x17 Number of maternal siblings 

— 4 

 .0154 

(.0380) 

 -.0077 

(.0291) 

 -.0699 

(.0303) 

 -.0321 

(.1530) 

x18 Grandmother’s education — 

12yrs. 

 .1108 

(.0285) 

 .0387 

(.0231) 

 -.0120 

(.0219) 

 .1081 

(.1105) 
   Prior 

x13 No health insurance 

available 

 .0000 

(.4400) 

 .0000 

(.4400) 

 .0000 

(.4400) 

 .0000 

(2.640) 
x14 Missing health insurance 

availability 

 .0000 

(.6223) 

 .0000 

(.6223) 

 .0000 

(.6223) 

 .0000 

(3.734) 
x15 Number of adults in 

household — 2 

 .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(18.00) 
x16 Number of quarters worked 

last year — 3 

 .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(18.00) 
x17 Number of maternal siblings 

— 4 

 .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(18.00) 
x18 Grandmother’s education — 

12yrs. 
 -.5000 

(.4400) 

 -.5000 

(.4400) 

 .5000 

(.4400) 

 .5000 

(2.640) 
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   S  D  PC  WG 

   Hispanic 

x19 Not on time in school at 

age 14 

 .1251 

(.2227) 

 -.1809 

(.1910) 

 .0259 

(.1808) 

 2.048 

(1.013) 

x20 Non-urban at age 14  -.1569 

(.2641) 

 -.3996 

(.2143) 

 -.3059 

(.2000) 

 .9139 

(1.113) 

x21 No employed males in 

household at age 14 

 -.2190 

(.2025) 

 -.1093 

(.1616) 

 -.0445 

(.1699) 

 -.8069 

(.8853) 

x22 Cigarette price index  .6106 

(1.546) 

 .5791 

(1.312) 

 .0583 

(1.392) 

 -4.908 

(7.489) 

x23 Alcohol price index  2.656 

(2.429) 

 -.6047 

(2.342) 

 -.3408 

(2.368) 

 .6341 

(13.34) 

x24 Medical services price 

index 

 1.655 

(2.456) 

 -1.177 

(2.276) 

 .4610 

(2.355) 

 -.9498 

(13.39) 

x25 Food price index  3.139 

(2.439) 

 1.139 

(2.223) 

 -.6822 

(2.294) 

 -2.901 

(12.95) 

   Prior 

x19 Not on time in school at 

age 14 

 .6000 

(.4400) 

 .6000 

(.4400) 

 -.6000 

(.4400) 

 -.6000 

(2.640) 

x20 Non-urban at age 14  .0000 

(.4400) 

 .0000 

(.4400) 

 .0000 

(.4400) 

 .0000 

(2.640) 

x21 No employed males in 

household at age 14 

 .0000 

(.4400) 

 .0000 

(.4400) 

 .0000 

(.4400) 

 .0000 

(2.640) 

x22 Cigarette price index  .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(7.348) 

x23 Alcohol price index  .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(7.348) 

x24 Medical services price 

index 

 .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(3.000) 

 .0000 

(7.348) 

x25 Food price index  .0000 

(3.000)

 .0000 

(3.000)

 .0000 

(3.000)

 .0000 

(7.348)
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Table 3: Gestation equation by group: posterior means (standard deviations) of Γ1 and ∆2 

under H* 

 

 Prior  Main 

White 

 Supp. 

White 

 Black  Hisp.  Native 

Amer. 

S -1.000 

(2.000) 

 .4480 

(.3880) 

 -.3833 

(.6904) 

 .2315 

(.8059) 

 -.1121 

(.7212) 

 -.1967 

(1.094) 

D .0000 

(2.000) 

 1.255 

(.4553) 

 .7983 

(.6243) 

 -1.880 

(.5406) 

 -.9589 

(1.017) 

 -.7112 

(.9714) 

PC .0000 

(2.000) 

 .2368 

(.5071) 

 .4575 

(.6929) 

 1.933 

(.9949) 

 1.138 

(.9766) 

 -.3798 

(1.101) 

WG .0000 

(2.000) 

 .0254 

(.0255) 

 .0395 

(.0345) 

 .0193 

(.0254) 

 -.0082 

(.0296) 

 .0061 

(.0430) 

         

Intercept 40.00 

(1.760) 

 37.67 

(.5938) 

 37.81 

(.8097) 

 37.43 

(.7886) 

 38.53 

(.7468) 

 39.55 

(1.055) 

Male child .0000 

(1.760) 

 -.2455 

(.1477) 

 -.1033 

(.3206) 

 .2075 

(.2461) 

 -.1696 

(.2810) 

 .4540 

(.6229) 

Mother’s age — 23yrs. .0000 

(12.00) 

 -.1058 

(.0213) 

 -.0425 

(.0524) 

 -.0506 

(.0340) 

 -.1128 

(.0444) 

 -.0178 

(.0844) 

Body mass index — 24 .0000 

(12.00) 

 .0260 

(.2369) 

 -.6877 

(.4426) 

 .0113 

(.2333) 

 -.0510 

(.3977) 

 -.7709 

(.8177) 

Maternal height — 

162cm 

.0000 

(12.00) 

 -.0013 

(.0685) 

 -.1950 

(.1264) 

 .0166 

(.0720) 

 .0087 

(.1194) 

 -.3070 

(.2579) 

Maternal weight — 63kg .0000 

(12.00) 

 .0068 

(.0873) 

 .2514 

(.1636) 

 .0197 

(.0861) 

 .0406 

(.1543) 

 .2946 

(.3075) 

            

Height -.0430 

(12.44) 

 -.0090 

(.0135) 

 .0088 

(.0266) 

 .0133 

(.0185) 

 .0239 

(.0259) 

 -.0786 

(.0556) 

Weight .1599 

(13.03) 

 .0167 

(.0074) 

 -.0106 

(.0164) 

 .0240 

(.0103) 

 .0212 

(.0154) 

 .0008 

(.0264) 
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Table 4: Birth length equation by group: posterior means (standard deviations) of Γ1, Γ2 and 

∆2 under H* 

 

 Prior  Main 

White 

 Supp. 

White 

 Black  Hisp.  Native 

Amer. 

S .0000 

(3.000) 

 -1.581 

(.5443) 

 -1.810 

(.9062) 

 -.4231 

(1.541) 

 -1.055 

(1.435) 

 -.1968 

(1.086) 

D .0000 

(3.000) 

 -1.283 

(.5805) 

 -1.385 

(1.100) 

 1.341 

(1.106) 

 1.201 

(1.398) 

 -.8107 

(1.202) 

PC .0000 

(3.000) 

 1.442 

(1.011) 

 -1.828 

(1.017) 

 .2599 

(1.077) 

 -1.129 

(1.235) 

 .1126 

(1.319) 

WG .1000 

(1.000) 

 .0605 

(.0342) 

 .0980 

(.0431) 

 .1325 

(.0412) 

 .0336 

(.0465) 

 .1026 

(.0456) 

G .0500 

(1.000) 

 .0884 

(.0527) 

 .1338 

(.0532) 

 .0069 

(.0529) 

 .0936 

(.0545) 

 .0726 

(.0555) 

         

Intercept 48.00 

(1.760) 

 46.69 

(1.787) 

 47.11 

(1.714) 

 47.39 

(1.749) 

 46.79 

(1.756) 

 47.35 

(1.705) 

Male child .1000 

(1.760) 

 .7303 

(.2283) 

 .9287 

(.4716) 

 .8529 

(.4873) 

 1.120 

(.5107) 

 .4028 

(.6407) 

Mother’s age — 23yrs. .0000 

(12.00) 

 -.0933 

(.0326) 

 .0770 

(.0772) 

 .0991 

(.0664) 

 -.0440 

(.0816) 

 -.0429 

(.0893) 

Body mass index — 24 .0000 

(12.00) 

 .0535 

(.0277) 

 -.0024 

(.0620) 

 .0351 

(.0527) 

 .0441 

(.0704) 

 .0625 

(.0706) 

Maternal height — 162cm .0000 

(12.00) 

 .0854 

(.0185) 

 .0941 

(.0355) 

 .0455 

(.0353) 

 .1294 

(.0448) 

 .0387 

(.0532) 

            

Height -.4611 

(12.22) 

 .0696 

(.0196) 

 .0948 

(.0388) 

 .0351 

(.0362) 

 .1163 

(.0468) 

 .0202 

(.0569) 

Weight .0928 

(4.543) 

 .0204 

(.0105) 

 -.0009 

(.0236) 

 .0134 

(.0201) 

 .0168 

(.0268) 

 .0238 

(.0269) 
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Table 7: Birth weight equation by group: posterior means (standard deviations) of Γ1, Γ2 and 

∆2 under H* 

 

 Prior  Main 

White 

 Supp. 

White 

 Black  Hisp.  Native 

Amer. 

S -.3500 

(1.000) 

 -.2887 

(.1008) 

 -.6074 

(.1859) 

 -.0482 

(.2442) 

 -.1299 

(.2045) 

 -.1136 

(.2908) 

D .0000 

(1.000) 

 .1239 

(.1418) 

 .1536 

(.1435) 

 -.1448 

(.1684) 

 -.0763 

(.2531) 

 .0268 

(.3135) 

PC .1000 

(1.000) 

 .1192 

(.1443) 

 -.0424 

(.1906) 

 .2244 

(.2074) 

 .3977 

(.2448) 

 -.0015 

(.3246) 

WG .1000 

(1.000) 

 .0009 

(.0155) 

 -.0222 

(.0137) 

 .0182 

(.0125) 

 .0070 

(.0133) 

 .0036 

(.0167) 

G .0100 

(1.000) 

 .0363 

(.0210) 

 .0471 

(.0241) 

 .0226 

(.0244) 

 .0296 

(.0224) 

 .0362 

(.0231) 

        

Intercept 2.000 

(.8800) 

 1.820 

(.7927) 

 1.843 

(.8940) 

 1.930 

(.9033) 

 1.806 

(.8472) 

 1.857 

(.8496) 

Male child .1000 

(.8800) 

 .0920 

(.0351) 

 .2065 

(.0758) 

 .1117 

(.0579) 

 -.0124 

(.0657) 

 .0765 

(.1531) 

Mother’s age — 23yrs. .0000 

(6.000) 

 -.0186 

(.0055) 

 -.0194 

(.0128) 

 .0014 

(.0079) 

 -.0137 

(.0108) 

 -.0066 

(.0209) 

Body mass index — 24 .0000 

(6.000) 

 -.0353 

(.0117) 

 -.0192 

(.0208) 

 -.0126 

(.0139) 

 -.0477 

(.0208) 

 -.0005 

(.0409) 

Maternal weight — 63kg .0000 

(6.000) 

 .0207 

(.0044) 

 .0135 

(.0071) 

 .0083 

(.0052) 

 .0241 

(.0080) 

 .0191 

(.0144) 

            

Height .0003 

(1.797) 

 .0105 

(.0035) 

 .0057 

(.0062) 

 .0037 

(.0041) 

 .0141 

(.0062) 

 .0001 

(.0121) 

Weight -.0923 

(6.443) 

 .0072 

(.0017) 

 .0062 

(.0037) 

 .0035 

(.0025) 

 .0059 

(.0036) 

 .0189 

(.0062) 
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Figure 1: Posterior predictive distribution for gestation under H* 
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Figure 2: Posterior predictive distribution for birth length under H* 
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Figure 3: Posterior predictive distribution for birth weight under H* 
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Abstract 

 

This paper presents some preliminary results of a US. Census Bureau research telephone survey of 

income in a national household sample.  The survey questionnaire used a survey procedure called 

respondent-generated intervals (RGIs) which requests that respondents supply bounds on their 

estimates of the sizes of recalled quantities.  A three-stage Bayesian hierarchical model, as well as 

several alternative estimators, were used to estimate population means for selected income-related 

items.   The bounds information was used to assess the hyperparameters of the prior distributions. 

Questionnaire design and testing was carried out as a joint effort of statisticians and cognitive 

scientists using the cognitive laboratory facilities of the US Census Bureau.  A Markov Chain Monte 

Carlo, Gibbs sampler was used to find Bayesian estimates of population means. The sample median 

and Bayesian estimators proved to be the best estimators relative to the benchmark we used for 

establishing true values (income tax forms).  An interval estimator based upon the bounds 

information was the best of several considered, and covered the true value two thirds of the time. 

 

 

1.  Introduction 
 

This paper presents some results of a sample survey that was carried out by the US Census 

Bureau to explore the efficacy of the “Respondent-Generated Intervals” (RGI) survey 

protocol when used with sensitive questions.  The idea is to use upper and lower bounds 

information to help to estimate population means in questions of recall of factual 

information.   We explored questions involving recall of various types of household 

income.   

 

The basic problem is how to improve population estimates from surveys or censuses when 

the responses contain bias errors, and the distribution characteristics of the response errors 

are unknown. It seemed to us that bias arises from individual differences, and Bayesian 

methods can be used to explore individual differences.  The notion is to elicit information 

from respondents about their recall distributions for some fact, just as we might elicit 

information about their prior distributions for some unknown quantity.  We use the 

information about their recall distributions to develop an empirical Bayes estimator of the 

population mean.  Perhaps such an estimator is more accurate, has less variability than a 

traditional estimator of the population mean, and is accompanied by an increase in 

response rate.  The RGI protocol reminds the respondent of the fallibility of memory and 

then requests that the respondent to a recall question give not only a basic response (called 



S.J. Press and K. H. Marquis
 

 Bayesian estimation in a US Census Bureau survey of income recall using … 

 152 

the ‘usage’ quantity), but also, a lower bound and an upper bound for the smallest and 

largest values the true answer to the recall question might possibly be for that respondent.  

This auxiliary bounds-information is then used to assess hyperparameters of the prior 

distributions associated with an empirical Bayesian estimator of  the population mean.   

To study the properties of such an estimator it was decided to use the RGI protocol in a 

telephone survey of income-related questions that are normally considered ‘sensitive’, in 

that respondents may tend to misrepresent their responses, in order to conceal their true 

incomes.  We could not use simulation of any sort to study the properties of such an 

approach because results depend so heavily on the real behaviour of human subjects.  

Therefore, to determine the accuracy of the new estimator, we compared the estimated 

population means with the ‘true values,’ obtained from income tax forms. 

 

The plan of the paper is to present the background and origins of the current research in 

Section 2.  In Section 3 we discuss the design of the research survey we conducted 

including the design of the questionnaires, the cognitive testing of the questions, the 

survey instrument format, the telephone survey, and the problems we had getting 

respondents to comprehend the questions.  Section 4 is devoted to explaining the data 

cleaning procedures we used. Section 5 presents some cognitive/statistical modelling of 

the data and the modelling of the Bayesian estimator.   We conclude with the results and 

some conclusions in Section 6. 
 

 

2.  Related work 
 
The RGI protocol for questionnaire design has its origins in Bayesian assessment 

procedures wherein an entire prior distribution (and/or a utility function) for an individual 

is assessed by connecting a collection of points on the individual’s distribution by means 

of a sequence of elicitation questions (see, for example, Schlaifer, 1959, Chapter 6; and 

Hogarth, 1980, Appendices B and C).   Proceeding along related lines, the RGI protocol 

was proposed, and a Bayesian estimation model was developed (see Press, 1999).  It was 

later used in experiments embedded in two different, but related, sample surveys carried 

out on two university campuses.  One was carried out on the University of California, 

Riverside, campus, and the other on the State University of New York, Stony Brook, 

campus (for details, see Press and Tanur, 2000a).  Undergraduate college students on the 

Riverside campus were given eight recall items and on the Stony Brook campus they were 

given 10 recall items, for a total of 18 items.  Respondents were asked to recall items 

relating to student affairs, such as grade point averages.  True values on the two campuses 

were verified by the university administrations.  Results suggested there were gains in 

estimation accuracy that could be achieved by the new procedure.   The Bayesian estimate 

was the most, or second most, accurate estimator of four estimators being compared over 

18 items. There were also suggested gains in the response rate (see Press and Tanur, 

2000b).  But there were still many questions remaining regarding issues such as how well 

would such a protocol work with sensitive questions, such as ‘income’?  For related work, 

see Kennickel (1997), who described the 1995 Survey of Consumer Finances (SCF), 

carried out by the National Opinion Research Centre in Chicago, as including 

opportunities for the respondents who answered either ‘don’t know’, or ‘refuse’, to select 
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from eight pre-assigned ranges, or to provide their own upper and lower bounds 

(‘volunteered ranges’); and the ‘unfolding brackets’ approach used in the Health and 

Retirement Survey, see Heeringa et al. (1995); and Juster, F.T. and J.P. Smith (1996).   

For details about the cognitive aspects of this work, see Marquis and Press (1999).  See 

also, Schwartz and Paulin (2000) for a comparison of these methods. 

 

 

3.  Design of the experiment 
 

Our initial goal was to develop questioning procedures to elicit the standard answer and 

the range of plausible alternative values. For estimation purposes, we wanted to get 

quantitative, interval scale information useful in fitting a Bayesian prior distribution for 

each respondent. So we decided to ask about income. To cover a range of difficulties, we 

asked about two types of income for the most recent calendar year (1997) and the year 

before that. Then we asked how much each of the two types of income had changed over 

the past five years (a very difficult cognitive task). The income types were wages and 

salaries on the one hand and interest and dividends on the other. 

 

The goal of the telephone survey was to obtain a best estimate report of an income amount 

and a report of the uncertainty range surrounding the estimated amount for several income 

items. These data are used in  Section 5 to develop improved estimation procedures. 

 

Sample 

We developed a frame of households from the Census Bureau’s commercial and 

administrative records containing households that filed joint tax returns having wage and 

salary income for the last five consecutive years.   The frame covered the four states in 

which the American Community Survey (ACS) held its first pilot tests.  Households 

interviewed in the ACS tests or for which we could not obtain current phone numbers 

were eliminated from the frame. A sample of about 2 000 households was drawn from this 

frame, and each was assigned to an experimental interviewing treatment.  The Census 

Bureau obtained a quota sample of 500 completed interviews, eliminating households that 

had become ineligible through retirement, death, divorce or other circumstances that 

precluded observing the joint wage and salary income on the tax return. 

 

We used two versions of the questionnaire. Each version asked about wage and salary 

income and about interest and dividend income for three time periods: the calendar years 

1997, and 1996, and the amount of income changes over the last five years (1993–97). 

Both versions included questions about characteristics that might correlate with income 

reporting accuracy, such as: Who pays the bills? Who fills out the federal tax form?, 

level of education and age. 

 

Version one of the questionnaire, administered to 75 % of the eligible, completed cases, 

asked for the low-range boundary first, then the high-range boundary, then the best 

estimate. Version two, administered to 25 % of the eligible, completed cases, reversed the 
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ordering by asking first for the best estimate of the income amount, then the confidence 

rating, then the lower-bound estimate, and finally, the upper-bound estimate. 

 

Telephone interviewing was conducted in May and June of 1998. We held a half-day 

training session for the telephone interviewers, covering the procedures and concepts, and 

providing detailed income definition information in case respondents asked about special 

circumstances. 

 

Since the frame information also included data from administrative records about 

household income, we eventually linked the survey responses to the administrative 

records to evaluate the validity of the telephone survey responses. 

 

We had about 2 000 potential respondents and actually obtained about 500 completed 

questionnaires provided by the telephone interviewers who used Computer Assisted 

Telephone Interviewing (CATI ) computer software.   There were six basic income-related 

questions in each of the two versions of the questionnaire for a total of 12 basic items.   

For each of the 12 items we had asked for three responses: a basic, traditional response 

(‘best estimate’); a lower bound; and an upper bound.   In addition, we asked some 

demographic types of questions: 

 

Who in your household usually handles the household finances like paying the bills? 

Who is the person who usually does the federal income taxes? 

How old were you on your last birthday? 

How old was your spouse on his/her last birthday? 

What was the highest level of schooling you completed, or the highest degree you have 

received? 

Did you earn income in 1997? Did your spouse earn income in 1997? 

Would you say that you and your family are better off or worse off financially than you 

were a year ago?  

 

In version two of the questionnaires we also asked the ‘confidence’ question: 

How sure are you that your estimate is the correct actual value?  Would you say it is 

probably very close, probably very far away, or probably somewhere between close and 

far away? 

 

Before any data analysis could take place the data had to be ‘cleaned’, that is, certain 

respondents and certain responses had to be filtered out first. There were three issues and 

steps involved in the data cleaning process.   

 

4. Modelling and analysis 
 

Using the data from this survey, for each item, we compared five point estimators: 

• the sample mean,  

• the midpoint estimator,  

• the sample median estimator,  
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• the Bayesian estimator whose prior mean is taken to be the sample median, 

• the Bayesian estimator whose prior mean is taken to be the midpoint estimator.    

We also developed three interval estimators.   These estimators are explained below. 

 

The basic data is really a triple of observations for each respondent: a usage quantity 

response, and upper and lower bounds. The triples of data from the respondents are 

considered to be mutually independent across respondents.  But because each respondent 

is attempting to recall a different income parameter, the data triples cannot be identically 

distributed. A classical, or sampling theory approach to modelling the usage and bounds 

data for a given respondent does not seem feasible since it is not clear how to model the 

joint distribution of the data.   Alternatively, for a given respondent, we’ll treat the usage 

quantity as basic data, and then use the bounds information as auxiliary, to assess the 

hyperparameters of prior distributions in a Bayesian hierarchical model.    

 

4.1.  Mid-point estimator 

 

For any given item, let ai and bi denote the lower and upper bounds given by respondent i, 

respectively,  and let Xi denote respondent i’s usage quantity.   The mid point of the 

interval (ai, bi) is given by (ai + bi)/2.    This is, we believe, an intuitively-sensible 

estimator of the income parameter that respondent i is attempting to recall.  If we average 

these mid points with equal weights, we call the result the mid-point estimator of the 

population mean.   We also note that some respondents gave symmetric responses while 

others gave asymmetric responses.   That is, if the usage quantity were in the middle of the 

interval given we called the response symmetric; otherwise, asymmetric.   For symmetric 

responses, the usage quantity Xi was in the middle of the interval.   The sample mean and 

the mid-point estimator would be identical therefore if all responses were symmetric; but 

they weren’t.   In fact, while percentages varied across items, typically, for a given item, 

most of the responses were indeed symmetric: the percentages of mid-point (symmetric) 

responses exceeded the percentages of asymmetric responses in eight out of the 12 items 

(Items 1,5,7-12).   In five of the 12 items (Items 5,8,10,11,12), the percentages of 

asymmetric responses tailed to the left more often than to the right.   In seven of the 12 

items (Items 1, 2, 3, 4, 6,7,9), the percentages of asymmetric responses tailed to the right 

more often than to the left. (see Table 1).    We average the end points to form 

, ,a and b for the average lower and upper bounds, respectively, and then form the 

interval ( , ).a b  We refer to this interval as the Average Respondent Generated Interval, 

or ARGI.   The evidence suggests that the ARGI  is a reasonable interval estimator for the 

population mean, and is a strong competitor of confidence or Bayesian credibility 

intervals.  We’ll compare the numerical values of these interval estimators in Section 5. 

 

4.2.  Bayesian estimators 

 

In a typical Bayesian analysis involving an issue for which certain people have some 

special knowledge, we often assume before taking any data that the subject has a (prior) 
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distribution about the unknown quantity in his/her head, and it is the task of the analyst to 

elicit some points on that prior distribution.   The elicited prior distribution is then 

combined with the likelihood for the data via Bayes’ theorem to develop the posterior 

distribution from which inferences about the unknown quantity will be made.   

Analogously, we will assume in this problem that each respondent to a recall question 

really has a complete ‘recall distribution’ in his/her head for the answer, but the respondent 

is requested by the interviewer to give just three points on that distribution, the 

respondent’s best guess about the location of the distribution (the respondent’s recalled 

usage quantity) and one extreme value in each of the tails (the respondent’s lower and 

upper bounds).   The distribution may be symmetric, or not.  We now develop a three-

stage Bayesian hierarchical model for the population mean.  Our approach will be to 

incorporate the usage quantities into the likelihood function for the data, and to utilise the 

bounds information to assess the parameters of the various prior distributions 

(hyperparameters), and the data-distribution variances.    Because we are using the bounds 

information to assess the hyperparameters, the resulting estimator is really an empirical 

Bayes’ estimator. 

 
The Normal-Normal hierarchical model 

 

We start with the model for the usage quantity for the recall distributions.  We are 

concerned here not with the distribution of the data taken as if we had independent, 

identically distributed data from a common distribution.  Instead, we are concerned 

with modelling the distribution of each respondent’s recall distribution.   As 

mentioned earlier, we have only three points on each distribution, so we can hardly fit 

a model.  But as mentioned earlier (Section 5.1), we have examined the degree of 

symmetry in each distribution (see Table 1) and have found that a normal distribution 

assumption is not inconsistent with these data.   Accordingly, assume that 

conditionally, the Xi’s, the usage quantities, are mutually independent, and 
2 2( , ) ~ ( , ).

i i
i i i
X Nθ σ θ σ    Define the (nx1) column vectors: 

X= ( ), ( ), ( )X x x
i i i

= =θ θ .    We are able to assume the '
i
sσ are approximately 

known by using the bounds information.  We estimate them by assuming that for a 

normal distribution, almost the total mass of the distribution is included within three 

standard deviations of the mean.  We therefore estimate them by taking: 

σ
i i i

b a= −( ) / 6 , where again, ai and bi denote the lower and upper bounds supplied 

by respondent i.   

 

For the joint distribution of the means of the recall distributions, we take the 

multivariate normal distribution whose means are located at the common mean 
0
θ  

(for this group of respondents), with common variance 
2.τ    That is, 









−−−= ))´((
2

1
exp

)2(

1
),/(

0022/

2

0 nnn
IIp θθθθ

τπ
τθθ

θ
 

 



Research in Official Statistics  Number 1/2001 

 157 

where In denotes the identity matrix of order n.   Only 
0
θ  and 

2τ  remain to be 

modelled.  Let θ
0
 denote the mean of the θ

0
 distribution (the prior mean), and 

assume: 

 
2 2

0 0 0
( , ) ~ ( , ), ( ) exp{ },N and p h hθ θ δ θ δ φ φ φ= −  

 

where:  
2h τ −≡  denotes the precision of the distribution of .

i
θ   By Bayes’ theorem, 

the posterior probability density function of 
0
θ , given x, is given by: 

   

2 2

0 0 0 0

0
2 2

0 0 0 0 0

( ) ( , ) ( , ) ( , )
( )

( ) ( , ) ( , ) ( , )

p x p h p p h d dh
p x

p x p h p p h d dhd

θ θ θ θ θ δ θ δ θ
θ

θ θ θ θ θ δ θ δ θ θ
=
∫∫

∫∫∫
. 

 

The Bayes’ estimator of the population mean is taken to be the posterior mean: 

          
*

0 0 0 0 0
[ ] ( ) .E x p x dθ θ θ θ θ= = ∫  

 

The numerical evaluation of the Bayes estimator is effected by means of the Gibbs 

sampler.  The one-dimensional conditional densities of all of the variables are readily 

obtained by conditioning in the joint density.  This is all we need to be able to apply 

the Gibbs sampler since there are no improper distributions being used, and because 

we know that the joint density exists (we know it explicitly).   To run the Gibbs 

sampler on our data we used the WinBUGS program Version 1.2 (see Spiegelhalter et 

al., 1999).   Conveniently, it was not necessary to work out the joint or conditional 

distributions in any particular format, but only necessary to input the three stages of 

distributions using the proper WinBugs syntax.  
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5.  Results and conclusions 
 

5.1.  Results regarding accuracy 

 

We define accuracy in terms of how close the survey response is to the entries on the 

family’s federal income tax form (such information is available to the Census Bureau on a 

very limited and very restricted confidential basis for research purposes only).    While we 

recognise that it is sometimes claimed that there are those who underestimate their 

incomes for tax purposes, we nevertheless have taken the income tax statement as our gold 

standard for ‘true’ household incomes. 

 

Many results of this analysis are given in Table 2a, which is devoted to a comparison of 

point estimates, and in Table 2b, which is devoted to a comparison of interval estimates.   

 

The first column of Table 2a denotes the case number of the 12 cases corresponding to the 

12 income-related items in the questionnaires.  The odd-numbered case numbers refer to 

questions in the version one questionnaire; the even-numbered case numbers refer to the 

corresponding questions in the version two questionnaire.  The odd-numbered questions 

differ from the even-numbered questions mainly in the ordering of the subsidiary 

questions.   For example, in case 1, the bounds questions were asked first (the lower bound 

was always requested first, and then the upper bound), and then the basic usage question 

was asked.    In case 2, the order was reversed, so that first the same basic question (usage) 

was asked, but  then the two bounds questions were asked.   Analogously for cases 3 and 

4; and then cases 5 and 6; etc.    

 

Under sample size (column 3) there were two numbers indicated for each case.  The first is 

the sample size used to compute the Bayes estimates, and the second is the sample size 

used to compute all other estimates.  The reason they differ is that there were generally 

instances for which the respondent gave the same response for an upper bound, and for a 

usage quantity, and for the lower bound.    In such instances where the respondent did not 

indicate any uncertainty about his/her recall, the estimated variance in the data for that 

respondent was zero.  It was therefore inappropriate to model a Bayesian estimator with a 

normal likelihood for a data point with zero variance.    Such responses were still used to 

calculate the sample mean, the sample median, and the mid-point estimator, but these 

responses  were not included in the Bayesian estimator calculations. 

 

Column 4 of Table 2a gives the true value of the population mean (the mean value of all 

the values presented on the tax returns for all respondents in our survey, for each item).  

Column 5 in Table 2a gives the usual sample mean estimator, in dollars (the average usage 

quantities), and column 6 gives the Gibbs sampler-computed Bayes estimates of the 

population mean, first using the sample median as the prior mean, 
0
θ , and then using the 

mid-point estimator as the prior mean, 
0
θ .  The Gibbs sampler was generally run for 100 

000 iterations, or until it was clear that convergence had taken place.  The posterior 
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probability density function for 
0
θ  was always unimodal and well-behaved with 

convergence taking place rapidly. 

 

Column 7 gives the mid-point estimator.  The last two columns of Table 2a list the 

variances of the lower and upper bounds, averaged across respondents.  

 

In Table 2b we repeat the first four columns of Table 2a, for convenience.    Then, the next 

three columns give the three interval estimates being compared: the ARGI, the interval 

ranging from the mean lower bound to the mean upper bound, the 95 % confidence 

interval, and the 95 % Bayesian credibility interval.   Finally, the last three columns give 

the lengths of these three intervals. 

 

Next we examine the ordering effect of whether it matters if the usage question is asked 

first, or after the bounds questions.  We may see from Table 2b that the ARGI is always 

smaller when the questions are ordered so that the basic usage question is asked first, 

followed by the bounds questions, for cases 1-6.    These first six are the cases where the 

information is probably best known  (perhaps respondents give shorter intervals when they 

can utilise their usage response as an anchor, if they are confident of their usage response).  

The trend is exactly reversed for the last six cases where the information is probably not as 

well known.   In these last six cases, the shorter ARGI is found by asking the bounds 

questions before the basic usage question.   

 

We also note that in both tables, the sample sizes differ from the odd-numbered cases to 

the even-numbered cases by a ratio of approximately 3:1 from odd number to even number 

(from version one to version two).   These sample size differences will certainly affect the 

sizes of the ARGI’s, but they shouldn’t have very much of an effect because all of the 

sample sizes (the ones in parenthesis in Table 2a) are at least about 90, as compared with 

the larger sample sizes of about 300.  Consistency of the lower and upper bound means in 

this roughly symmetric situation ensures that the sample size differences will have but a 

minor effect. 

 

In Table 2b we see from the last three columns that the 95 % Bayesian credibility interval  

is always shorter than both the 95 % confidence interval, and the ARGI.   Moreover, the 

ARGI and the 95 % confidence intervals are each shorter than one another for about half 

of the items.   We may also note that both the 95 % Bayesian credibility interval and the 

ARGI are shorter for the usage question being asked first, and the bounds questions 

following, for the 1997 salary and wages, and interest and dividends (the most recent 

information); the effect reverses for the less recent information.   (In cases 5 and 6 there is 

a small inconsistency of this trend between the credibility interval the ARGI,  but the 

difference is small.) 

 

Examining the lengths of the 95 % confidence intervals, asking the basic usage question 

first, followed by the bounds questions, always resulted in longer confidence intervals than 

were found by asking the questions in the reverse order, in disagreement with both the 

Bayesian credibility intervals and the ARGI’s.   At least part of the differences in length of 
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the confidence intervals has to be attributable to relative sample sizes; recall that the 

version that asked for bounds first followed by usage typically had sample sizes three 

times that of the version that asked for the standard question followed by the bounds.   

Moreover, the 95 % confidence interval does not depend upon the bounds information in 

any way, whereas both the Bayesian credibility interval and the ARGI do take the bounds 

into account; so it’s not surprising that the ordering of the questions would reflect this 

difference.   The 95 % confidence interval is always smaller for larger sample sizes (an 

effect that is confounded with the ordering effect). 

 

We were disappointed to find that for these very sensitive income questions, none of our 

competing point estimators performed very well with respect to accuracy when the item 

requested recall of the size of  a change in some type of income over a five-year period 

(cases 5, 6, 11, 12).   There were five point estimators: the sample mean, the sample 

median, the two Bayesian estimators, and the mid-point estimator.  Each was the most 

accurate of the five for a few times out of the 12 cases, and none was the most accurate 

more than five times out of the 12 cases.   For 1996 and 1997 salary and wages (cases 1-4), 

the true (tax form) value was always less than any of the estimators.    For 1996 and 1997 

interest and dividends (cases 7-10), the point estimators did not always overestimate the 

true values.       

 

Things looked somewhat better for interval estimation, however.   There were three 

interval estimators being compared: the 95 % confidence interval, the 95 % Bayesian 

credibility interval, and the ARGI (95 % was selected for comparison purposes only 

because it is the most often-used level).   The ARGI, or average respondent-generated 

interval (interval from the average lower bound to the average upper bound) covered the 

true values eight times in the 12 cases, and the 95 % confidence interval covered the true 

values seven times in the 12 cases.   The only times the ARGI did not cover the true values 

was for the two, five-year change items: How much has your household income from 

salary and wages changed over the last five years?  How much has your household income 

from interest and dividends changed over the last five years?   It didn’t seem to matter in 

which order the bounds questions were asked.  Regardless of order, for the four questions 

covering change in income over the last five years, all of the estimators had difficulty 

covering the true value.  These were the items that were the most difficult to recall since 

they required more complex cognitive tasks.   Depending upon the strategy the respondent 

used to answer such a question, and the interpretation the respondent gave to the meaning 

of the question, it may have been necessary for a respondent to recall not only the  income 

value today, and the income value five years ago, but then to calculate the difference.  

Comparing the last three columns in Table 2b shows that the Bayesian 95 % credibility 

intervals  were always shorter than the other two intervals.   This was of course not 

surprising since such shorter intervals generally result when credibility intervals are 

calculated using non-vague (‘informative’) prior distributions.  

 

Averaged over the 12 items, the root mean squared percentage error was smallest for 

the median usage estimator, followed by both Bayesian estimators (see Table 3).  It is 

likely that improved assessment of the hyperparameters in the hierarchical model will 

improve the performance of the Bayesian estimator.   It is also likely that had 
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hyperparameters been assessed from results of earlier surveys, numerical results 

would have been better. 

 

5.2.  Results regarding non-response 

 

We also examined response rate.   There were generally many instances in which 

respondents did not supply usage quantities,  but mostly, in such cases, they also did not 

supply bounds information.  In fact, the number of instances in which respondents 

provided (both) bounds information when they did not supply usage quantities ranged 

from 0 to 4, across the 12 items we studied.   This result is in stark contrast to results 

obtained in earlier experiments where percentages of instances for which respondents gave 

bounds information when they did not supply usage quantities ranged as high as 41 %.  

These earlier experiments (on university campuses) did not involve such sensitive 

(income-related) questions.   Moreover, they involved pencil and paper questionnaires 

instead of the telephone survey we are discussing here, and they involved undergraduate 

student respondents rather than respondents from established households, who have been 

presented with questions from professional interviewers representing the US Census 

Bureau.   Overall, there was greater respondent cooperation in this government survey by 

telephone than we found in our earlier campus-based experiments.   We are not certain 

whether the cooperation effect is attributable to the fact that this was a US Census Bureau 

survey, or whether it is attributable to the nature of the administration of the survey.  
 

5.3. Conclusions 

 

We used income tax returns as the gold standard for truth.  This approach presents several 

problems.  First of all, unlike the usual record check surveys that use administrative record 

checks as the gold standard, our procedure compares the official self-reports in the tax 

form with the self-reports in the survey.   These two situations of self-reporting may well 

generate different pressures for over- and under-reporting.  Under-reporting in the tax form 

results in lower tax assessment but is constrained by respondent’s awareness that the 

Internal Revenue Service receives independent reports from employers and payers of 

dividend and interest.  There are no such constraints on under-reporting in the survey 

context.  Further, it is not in the taxpayer’s interest to exaggerate his/her income on a tax 

form; on the other hand, issues of social desirability may encourage such over-reporting in 

a survey context.   We actually found that the ‘true’ income tax records provided values 

that were smaller than any of the point estimates in all but three cases: cases 8, 9, 10. 

 

Secondly, there are possibilities of misinterpretation of what the respondent was to report 

on the survey.   For example, we asked ‘What is your best estimate of your combined 

wages and salary income for 1997?’  We were quite clear about the line on the income tax 

form that we considered ‘truth’ in this case.  But would the respondent interpret the 

question in the same way?  Would he/she report gross income, or take-home pay?   Would 

he/she exclude non-taxable income such as deductions for ‘supplemental retirement 

annuities’, or before-tax health insurance premiums? 
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Thirdly, especially if the respondent uses a professional to prepare his/her taxes, as most of 

our respondents did, he/she may have very poor knowledge of some of the amounts we 

asked for; in particular, the totality of interest and dividend income.  Dividends that are 

reinvested automatically, and interest that is automatically credited to bank accounts are 

usually summarised together with other interest and dividends for respondents only once a 

year on their tax forms.   Unless a respondent carefully studies those forms before signing 

them, he/she may have little knowledge of the total amount of interest and dividends 

accumulated.  

 

Finally, our question about change in salaries and wages over a five-year period requires 

the respondent to recall two amounts each plagued with all of the difficulties detailed 

above, and then to perform an arithmetic operation.  Not only is this task not pure recall, 

but it is exceedingly daunting cognitively.   And the task is even more daunting when we 

ask for change in interest and dividend income.   

 

For all of these reasons we are not terribly surprised that none of the point estimates came 

very close to truth as defined by our gold standard.   

 

The RGI protocol provided the ARGI interval estimates that did cover the ‘true values’ 

two thirds of the time, in spite of possible systematic under-reporting biases.   These fairly 

successful interval estimates confirm the earlier successful results from the campus 

experiments.  Moreover, they suggest that the RGI protocol is likely to provide improved 

interval estimates over traditional interval estimates even for sensitive questions.    
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7.  Tables 
 

TABLE 1 

 
RESULTS ON SYMMETRY/ASYMMETRY IN CENSUS SURVEY DATA 

 

 
Case # Question / order 

of bounds 
Coded response (*) 

 
Count Per cent Sample 

size 

1 1997 — salary and 
wages/ low–high 

usage  

-1 
0 
1 

79 
120 
147 

22.83 
34.68 
42.49 

346 

2 1997 — salary and 
wages/ low–high 

usage 

-1 
0 
1 

38 
33 
43 

33.33 
28.95 
37.72 

114 

3 

    

 

1996 —- salary and 
wages/ low–high 

usage 

-1 
0 
1 

79 
112 
152 

23.03 
32.65 
44.31 

343 

4 1996 — salary and 
wages/ low–high 

usage 

-1 
0 
1 

29 
33 
52 

25.44 
28.95 
45.61 

114 

5 Five-year change in 
salary and wages/ 
low–high usage  

-1 
0 
1 

105 
120 
76 

34.88 
39.87 
25.25 

301 

6 Five-year change in 
salary and wages/ 
low–high usage 

-1 
0 
1 

30 
33 
35 

30.61 
33.67 
35.71 

98 

7 1997-interest and 
dividends/ low–high 

usage 

-1 
0 
1 

70 
150 
76 

23.65 
50.68 
25.68 

296 

8 1997 —- interest and 
dividends/ low– high 

usage 

-1 
0 
1 

29 
44 
28 

28.71 
43.56 
27.72 

101 

9 1996 — interest and 
dividends/ low– high 

usage 

-1 
0 
1 

73 
139 
77 

25.26 
48.10 
26.64 

289 

10 1996 — interest and 
dividends/ low– high 

usage 

-1 
0 
1 

33 
40 
26 

33.33 
40.40 
26.26 

99 

11 Five-year change in 
interest and 

dividends/ low–high 
usage 

-1 
0 
1 

87 
140 
47 

31.75 
51.09 
17.15 

274 

12 Five-year change in 
interest and 

dividends/ low–high 
usage 

-1 
0 
1 

35 
36 
20 

38.46 
39.56 
21.98 

91 

 
(*)Coded as -1 means usage response is closer to lower bound; coded as +1 means usage response is closer to upper bound; 

coded as zero means usage response is at the mid point of the range. 



�����������	
�����
���	�����
�
���	����	
������	���
��
�	������
��������	�������������
��������	������
����

�� !�

���������

	
���
��
��
���
���������������

����	��������
���������

�
�����
��

����	
��
�
���������
�������

�������
�
���
������
��	��

�������	��

�����
���������
������
�������

�������
�������	��
���������
�������

�������
��	�� 
	!�
���
��
�
 
	!��
��
��
�	��

"
�#��
�	�
��	
��	��
��������
�������

$��
��%�����
�� ���������

$��
��%�����
������������

&� &''()
�����������
 �*��
��� +
!
*!����*���

,--�
�,./��

0&102/� 021,((�-�
�3��

0&1,0-�
�3��
�

0'1-0-�

021(40�.� 41-&-12',12'.� 01',-1./&1/0'�

4� &''()
�����������
 �*��
��� +
!
*!����*��

''�
�&&.��

.(1(//� 0&1((/�(� 0-1,/-�
�

0-1/(-�

0-102-�4� &1-.01//21&2&� &1,-&12041-(4�

,� &''/)
�����������
 �*��
��� +
!
*!����*��

,&2�
�,.,��

.21'4(� 0014'.�0� 0/1/'-�
�

0/1-4-�

0,1(02�(�
�3��

&1&2.1.&01'2/� 41,-.1,&(1.2&�

.� &''/)
�����������
 �*��
��� +
!
*!����*��

&-.�
�&&.��

..12(4� 0-14&,�/� .(1-'-�
�

.'1&0-�

.'1&4-�.� &1-4/1/221'0'� &1,,(1.--1&/'�

0� 5
��#�����
%!��*��
��
�����������
 �*��
��� +
!
*!����*���

4(0�
�,-&��

(1,,'� &(1.,2�.� &(1.4-�
�3��
�
�
�

&(1.&-�

&214/(�4� 4/'1(/(14-'� (/-1/(,1,&&�

/� 5
��#�����
%!��*��
��
�����������
 �*��
��� +
!
*!����*��

',�
�'2��

,1-22� &(14..�'� &.144-�
�
�
�

&.144-�

&/1.2/�,� ,,(1/-(1((,� (0'1(0'12-4�

(� &''()

�	����	�����
�
�
�����
�
�� +!
*!�
���*��

4,&�
�4'4��

4102'� 4(.4�2�
�3��

.-'�2�
�

420,�

420,�(� /01'',12-0� &4'1/&&124.�

2� &''()

�	����	�����
�
�
�����
�
�� +!
*!�
���*��

2.�
�&-&��

,122&� ,2-,�.�
�3��

.-/�&�
�

,'20�

,'20�4� .21(401(24� &,012,,1,(2�

'� &''/)

�	����	�����
�
�
�����
�
�� +!
*!�
���*��

4,.�
�42'��

41,./� 4-2&�,� ,-(�.�
�

4&,'�

4&.-�4� 4'1',-1,40� 2-1(-,14,2�

&-� &''/)

�	����	�

����
�
�����

��� +!
*!�
���*��

22�
�''��

,1'-&� ,/4&�2� ,-/�,�
�

,(0-�

,(0-�,��3�� ,212'210/4� &-21/-(1(0(�

&&� 5
��#�����
%!��*��
��

�	����	�����
�
�
�����
�
�� +!
*!�
���*��

4&'�
�4(.��

'&4� &0(.�2�
�3��

&0.�.�
�
�
�

&2-.�

&2-.�-� &.12'.120-� (41&&&1./4�



���������	
����	�	�
�����	��	�����"��#����$%&&��

� � '�

�
&4� 5
��#�����

%!��*��
��

�	����	�����
�
�
�����
�
�� +!
*!�
���*��

(/�
�'&��

&1&4.� ,0.,�&�
�3��

4&.�&�
�3��
�
�

.&/-�

.&(.�0� (&102(1&4,� ''-1'221,,2�

�
���������������������3��"��	��%%���	������*�	!���������
�	���	
��	�����
�
�

�
���������

�
	
���
��
��
������
���������������

����	��������
���������

�
�
�����
��

����	
��
�
���������
�������

�������
�
����
�������
��	��

�������	��

�����
������
���������
�������

6�����
7�����
*����
�	��
�6789����

'0�:�
%���
���
9�	������
��

'0�:�
%������

�	������
��

;��*	!�
���

6789�
��

;��*	!�
���'0�:�
%���
���

�	������

;��*	!�
���'0�:�
%�����

�	������

&� &''()�������
���� �*��
�
�� +!
*!�
���*���

,--�
�,./��

0&102/� �.210'01�
/2120/��
�33��

�041','1�
/,12&0��

�0(14--1�
/-12/-���

4-14/&� &-12(/� ,1//-�

4� &''()�������
���� �*��
�
�� +!
*!�
���*��

''�
�&&.��

.(1(//� �.01(2(1�
001,(,��
�33��

�.01,-.1�
0214.'��
�33��

�.'1/'-1�
0&1/0-��

'102/� &41'.0� &1'/-�

,� &''/)�������
���� �*��
�
�� +!
*!�
���*��

,&2�
�,.,��

.21'4(� �.01'-.1�
/&1/&,��
�33��

�0-12&/1�
0'1((,��

�0&1''-1�
/-1-/-��

&01(-'� 21'0(� 21-(-�

.� &''/)�������
���� �*��
�
�� +!
*!�
���*��

&-.�
�&&.��

..12(4� �..1&.'1�
0.1-'4��
�33��

�.,12'&1�
0/10,/��
�33��

�.214--1�
0-1&--��

'1'.,� &41/.0� &1'--�

0� 5
��#�����
%!��*��
��
�����������
 �*��
��� +
!
*!����*���

4(0�
�,-&��

(1,,'� �&41.'/1�
4.1-,'��

�&.1'.(1�
&'1',-��

�&.1'/-1�
&'1/0-��

&&10.,� .1'2,� .1/'-�

/� 5
��#�����
%!��*��
��
�����������
 �*��
��� +
!
*!����*��

',�
�'2��

,1-22� �&&1,2,1�
4&102'��

�&414-01�
44142.��

�&&1&/-1�
&(1,4-��

&-14-/� &-1-('� /1&/-�

(� &''()

�	����	�����
�
�
�����
�
�� +!
*!�
���*��

4,&�
�4'4��

4102'� �4&0,1�
,00.���33��

�&(.-1�
,(.0���33��

�41('(1�
4'-'��

&1.-&� 41--0� &&4�

2� &''()

�	����	�����
�
�
�����
�
�� +!
*!�
���*��

2.�
�&-&��

,122&� �42-(1�
0&/.���33��

�4-021�
00.'���33��

�,1'-/1�
.1-/,��

41,0(� ,1.'&� &0(�



�����������	
�����
���	�����
�
���	����	
������	���
��
�	������
��������	�������������
��������	������
����

��  �

�
'� &''/)


�	����	�����
�
�
�����
�
�� +!
*!�
���*��

4,.�
�42'��

41,./� �&0&.1�
4(/(���33��

�&&2/1�
4'((���33��

�41-'(1�
41&2&��

&140,� &1('&� 2.�

&-� &''/)

�	����	�����
�
�
�����
�
�� +!
*!�
���*��

22�
�''��

,1'-&� �4/,.1�
.2/(���33��

�4-0'1�
0&20���33��

�,1/((1�
,124,��

414,,� ,1&4/� &./�

&&� 5
��#�����
%!��*��
��

�	����	�����
�
�
�����
�
�� +!
*!�
���*��

4&'�
�4(.��

'&4� �&-,41�
40(/��

�'//1�4&2.�� �&1(/'1�
&12,'��

&10..� &14&2� (-�

&4� 5
��#�����
%!��*��
��

�	����	�����
�
�
�����
�
�� +!
*!�
���*��

(/�
�'&��

&1&4.� �4-''1�
/40-��

�&0/1�/',-��
�33��

�.1-('1�
.14.4��

.1&0&� /1((.� &/,�

�
�

����������������������33���������	����������� �
�

��������

�



�����������
������



�����
�����
��
�����������

�
�

"��
������*����	
��	�� ���������	
��	��� ��������������	
��	��� "
�#��
�	�
��	
��	��

2'�(�:� &4(�-/�:��
��&,'�-/�:� &0,�&/�:� &0/�/�:�

�



Research in Official Statistics  Number 1/2001 

 167 

8.  References 
 

[1] Ericson, W. A. (1969), ‘A note on the posterior mean of a population mean’, 

Journal of the Royal Statistical Society (B), Vol. 31, No 2, pp. 332–334. 

 

[2] Heeringa, S. G., Hill, D. H. and Howell, D. A. (1995), ‘Unfolding brackets for 

reducing item non-response in economic surveys’, Health and Retirement Study 

Working Paper Series, Paper No 94-029. 

 

[3] Hogarth, R. (1980), Judgment and choice, John Wiley and Sons, Inc., New York. 

 

[4] Juster, F. T. and Smith, J. P. (1996), ‘Improving the quality of economic data: 

Lessons from the HRS and AHEAD’, mimeo, Survey Research Centre, University 

of Michigan. 

 

[5] Kennickell, A. B. (1997), ‘Using range techniques with CAPI in the 1995 survey 

of consumer finances’, Survey of Consumer Finances Working Paper, January 

1997, Board of Governors of the Federal Reserve System, Washington, DC, 

20551. 

 

[6] Lindley, D. V. (1965), Introduction to probability and statistics — Part 2: 

Inference, Cambridge University Press, Cambridge. 

 

[7] Marquis, K. H., and Press, S. J. (1999), ‘Cognitive design and Bayesian modelling 

of a census survey of income recall’, Proceedings of the Federal Committee on 

Statistical Methodology Conference, Washington, DC, 16 November 1999, pp.51–

64 (see http://bts.gov/fcsm). 

 

[8] Metcalf, J. and Shimamura, A. P. (eds) (1994),  Metacognition: Knowing about 

knowing, The NUT Press, Cambridge. 

 

[9] Press, S. J. (1989), Bayesian statistics: Principles, models and applications, John 

Wiley and Sons, Inc., New York. 

 

[10] Press, S. J. (1999), ‘Respondent-generated intervals for recall in sample surveys’, 

manuscript, Department of Statistics, University of California, Riverside, CA 

92521-0138, January 1999 (http://cnas.ucr.edu/~stat/press.htm). 

 

[11] Press, S. J. and Tanur, J. M. (2000a), ‘Experimenting with respondent-generated 

intervals in sample surveys’, with discussions, in ‘Survey Research at the 

Intersection of Statistics and Cognitive Psychology’, Working Paper Series No 28, 

Monroe G. Sirken, Editor, National Centre for Health Statistics, January 2000, US 

Department of Health and Human Services, Centre for Disease Control and 

Prevention, pp.1–18. 



S.J. Press and K. H. Marquis
 

 Bayesian estimation in a US Census Bureau survey of income recall using … 

 168 

[12] Press, S. J. and Tanur, J. M. (2000b), ‘Respondent-generated interval estimation to 

reduce item non-response’, Applied Statistical Science V, Nova Science 

Publishers, in press (http://cnas.ucr.edu/~stat/press.htm). 

 

[13] Raiffa, H. and Schlaifer, R. O. (1961), Applied statistical decision theory, 

Graduate School of Business Administration, Harvard University. 

 

[14] Schlaifer, R. (1959), Probability and statistics for business decisions, McGraw 

Hill Book Co, Inc., New York. 

 

[15] Schwartz, L. and Paulin, G. (2000), ‘Improving response rates to income 

questions’, American Statistical Association: Proceedings of the Section on Survey 

Research Methods, pp. 965–969.  Also, a more complete manuscript was 

submitted to the Journal of Official Statistics. 

 

[16] Spiegelhalter, D., Thomas, Andrew; and Nicky Best  (May 1999),  ‘WinBUGS 

Version 1.2 user manual’, MRC Biostatistics Unit, Institute of Public Health, 

Cambridge CB2 2SR, UK (http://www.mrc-bsu.cam.ac.uk/bugs). 

 

 

 
 

 



Research in Official Statistics  Number 1/2001 

 169 

Common trends in European school populations 
 

Paola Sebastiani (*) and Marco Ramoni (**) 

 

(*) Department of Mathematics and Statistics, University of Massachusetts 

(**) Children’s Hospital Informatics Program, Harvard University Medical School 

 

Keywords: Autoregressive models, model-based clustering, Bayesian model 

selection, temporal data. 

 

Abstract 

 

This paper uses a novel Bayesian clustering method to categorise the temporal evolution of the 

share of population participating in tertiary/higher education in 14 European nations. The method 

represents time series as autoregressive models and applies an agglomerative clustering procedure 

to discover the most probable set of clusters describing the essential dynamics of these time series. 

To increase efficiency, the method uses a distance-based heuristic search strategy. This clustering 

method partitions the evolution of school population into three groups, thus revealing significant 

differences among tertiary/higher education in the 14 European nations.  

 

 

1.  Introduction 
 

The time series in Figure 1 describe the evolution of the share of population enrolled in 

higher education in 14 nations of the European Community between 1970 and 1995. Our 

task is to group the 14 time series on the basis of their similarity in order to detect 

significant differences among European higher education trends. Data were provided by 

Unesco and Eurostat, via the r·cade databank, available at the URL http://www-

rcade.dur.ac.uk (Unesco, 1997). 

 

The method to solve this problem depends on the meaning we attach to similar time series. 

Throughout this paper, we will assume that time series are the realisation of stochastic 

processes and two or more time series are similar when the same process generates them. 

Thus, deciding whether two time series are similar is equivalent to deciding whether they 

are observations of the same process. Put in this way, the task of grouping of the time 

series can be solved as a clustering problem: given a batch of time series, we wish to 

cluster them so that each cluster contains time series generated by the same process. 

Particularly, we wish to solve this problem without specifying, a priori, the number of 

clusters. We solve this problem by using a novel Bayesian for method clustering of 

contributions. 

 

We model the stochastic process generating each time series as an autoregressive model of 

order p, say AR(p), and then we cluster those time series that have a high posterior 

probability of being generated by the same AR(p) model. The distinguished feature of this 

method is to describe a clustering of time series as a statistical model so that the clustering 

task can be solved as a Bayesian model selection problem. Thus, the clustering model we 
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look for is the most likely partition of the time series, given the data at hand and prior 

information about the problem. 

 

In principle, we just need to evaluate the posterior probability of all possible clustering 

models of time series and select the one with maximum posterior probability. However, the 

number of clustering models grows exponentially with the number of time series and a 

heuristic search is needed to make the method feasible. The method we adopt uses a 

measure of similarity between AR(p) models to drive the search process in a subspace of 

all possible clustering models. An important feature of this heuristic search is to provide a 

stopping rule, so that clustering can be done without assuming a given number of clusters 

as traditional clustering methods do. 

 

The clustering method we use is fully described and evaluated in Sebastiani and Ramoni 

(2001). In the next section we briefly describe the method and the search algorithm. The 

analysis of the higher education data set is described in Section 3 and a discussion is in 

Section 4. 

Figure 1: Share of population enrolled in higher education, between 1970 and 1996, in 

the 14 European countries: AU: Austria; BE: Belgium; DK: Denmark; GR: 

Greece; FR: France; ES: Spain; PT: Portugal; IT: Italy; IE: Ireland; FI: 

Finland; NL: The Netherland; UK: United Kingdom; Lu: Luxemburg; SW: 

Sweden. 
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2.  Bayesian clustering by dynamics 
 

The clustering method we describe here has three components: a model for the time series, 

the posterior probability of a clustering model and a heuristic search strategy. These three 

elements are described very briefly. More details are provided in Sebastiani and Ramoni 

(2001). 

 

2.1. Autoregressive models 

 

Let },,,,,,,{ 11 ntp yyyyyS LLL
−−

= be a time series of values observed for a 

continuous variable Y. The series follows an AR(p) model if 

 

εββ += Xy |  

 

where y  is the n-dimension vector ),,( 1 nyyy L= , X  is the  nn×  matrix with tth row 

given by the vector of p observations ptt yy
−−

,,1 L , ),,( 1 pβββ L=  is a vector of 

autoregressive coefficients, and ε  is a vector of uncorrelated errors. We assume that the 

errors are normally distributed, with expectation 0)( =tE ε , and variance 
2)( σε =tV for 

any t. We shall denote by τ the precision, so that τσ /12 = . 

 

The value p is called the order of the autoregression, and specifies the Markov order of the 

series: namely that ),,(|),,( 11 pttptpt yyyyy
−−−−−

⊥ LL , where we use the symbol ⊥ to 

denote stochastic independence. The series follows a stationary process if the roots of the 

polynomial ∑
=

−=
p

j

j

juuf
1

1)( β  have moduli greater than unity. When some of the 

roots have moduli smaller than unity, the process is non-stationary, but typically some 

transformations of the data are sufficient to achieve stationarity.  

 

The model above describes the evolution of the process around a zero mean. By adding an 

intercept term 0β , the model can be extended to include a non-zero mean µ , for each ty , 

so that ),,,( 10 pββββ L= and the matrix X  is augmented by a column of ones. The 

process mean and the autoregressive coefficients are related by: ∑
=

−=
p

j j10 )1/( ββµ . 

 

We wish to compute Bayesian estimates of the parameters β  and τ . To compute the 

Bayesian estimates of β  and τ , we need to update their joint prior density ),( τβf  into 

the posterior density )|,( yf τβ , by using Bayes’ theorem: 
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)(

),|(),(
)|,(

yf

yff
yf

τβτβ
τβ = , 

 

Where ),|( τβyf is the likelihood function and )(yf  is the marginal likelihood, which 

is computed as 

 

∫= τβτβτβ ddyffyf ),|(),()( . 

 

For a given autoregressive order p, we compute the likelihood function, conditional on the 

first p values of the time series, as 

 








 −−
−=

2

)()(
exp

)2(
),|(

ββτ

π

τ
τβ

XyXy
yf

T

n

n

. 

 

 

We assume as prior density for β  and τ  the improper prior 
2−∝ ττβ Xf ),( , with 

0>τ  (see Jeffreys, 1946). Suppose the matrix X  is of full rank, and let β̂ and RSS  

denote respectively the ordinary least squares estimate of β  and the residual sum of 

squares respectively: 

 

yXXX TT 1)(ˆ −=β  

 

yXXXXIyRSS TT

n

T ))(( 1−−=  

 

where nI  is the  identity matrix. Then, one can show that the marginal likelihood is 

 

2/1
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where q is the dimension of the vector β . Furthermore, the posterior distribution of β  

and τ , is normal-gamma, with 

 

)))((,ˆ(~,| 1−XXNy Tτβτβ  

 








 −−

2

2
,

2
~|

qnRSS
Gammayτ , 



Research in Official Statistics  Number 1/2001 

 173 

 

where Gamma(a,b) is a gamma distribution with expected value a/b and variance a/b2. 

 

Both distributions are proper whenever as the matrix X  is of full rank, and 2+> qn . 

The Bayesian posterior point estimates of β and τ  are ∝ and RSSqn /)2( −− . 

 

2.2.  Clustering 

 

Suppose  we have a batch of time series },,{ 1 mSSS L= , which are generated by an 

unknown number of stationary AR(p) models with a common autoregressive order p, and 

different autoregressive coefficients. We wish to cluster the time series in S according to 

their dynamics. Our goal is twofold: 

 

• to find the set of clusters that gives the best partition of the data; 

• to assign each time series to one and only one cluster. 

 

Contrary to common practice, we do not want to specify, a priori, a preset number of 

clusters. 

 

Formally, the clustering method regards a partition as an unobserved discrete variable C  

with states cCC ,,1 L . Each state kC of the variable C  labels, in the same way, the time 

series generated by the same AR(p) model and, hence, it represents a cluster of time series. 

The number c of states of the variable C  is unknown, but it is bounded above by the total 

number of time series in the data set S . The clustering algorithm tries to re-label those 

time series that are likely to have been generated by the same AR(p) model and thus 

merges the initial states mCC ,,1 L of the variable C  into a subset cCC ,,1 L , with 

mc < . 

 

The specification of the number c of states of the variable C  and the assignment of one of 

its states to each time series iS  define a statistical model cM . This allows us to regard the 

clustering task as a Bayesian model selection problem, in which the model we seek is the 

most probable way of re-labelling time series, given the data. If )( cMP  is the prior 

probability of each model cM , by Bayes’ theorem its posterior probability is 

)|()()|( ccc MSfMPSMP ∝ , where )|( cMSf  is the marginal likelihood, now 

written as an explicit function of the clustering model. A model-based Bayesian solution to 

the clustering problem consists of selecting the clustering model with maximum posterior 

probability. It is shown in Sebastiani and Ramoni (2001) that, under some assumptions on 

the sample space, the adoption of a particular parameterisation for the model cM  and the 

specification of an improper-uniform prior lead to a simple, closed-form expression for the 

marginal likelihood )|( cMSf . 
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Conditional on the model cM  and, hence, on a specification of the number of states of the 

variable C  and of the labelling of the original time series, we suppose that the marginal 

distribution of the variable C  is multinomial, with cell probabilities )|( θθ kk CCP == . 

Furthermore, we suppose that, conditional on kCC = , the batch of km time series }{ kjS  

assigned to cluster kC  are independent of the batch of time series }{ ljS  assigned to any 

other cluster lC , and that the time series generated by the same AR(p) model in cluster kC  

are mutually independent. We denote by kβ  the vector of autoregression coefficients and 

by kτ  the precision of the AR(p) model generating the time series in cluster kC .  We 

suppose that each of these series can be represented as 

 

kjkkjkkkj Xy εβτβ +=,| . 

 

The index k indicates cluster membership, and kjε  is a vector of uncorrelated errors, 

which we assume to be normally distributed, with 0)( =kjtE ε  and 
1

)(
−

= kkjtV τε , for any 

t .  The fact that series assigned to the same cluster kC  are characterised by the same 

vector of autoregression coefficients kβ , and by the same variance 
12 −

= kk τσ , allows us 

to represent the whole batch of series }{ kjS  in cluster kC as 

 

kkkkkk Xy εβτβ +=,|  

 

where the vector ky  and the matrix kX are defined as 

 


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Let β  denote the set of parameter vectors )( kββ = , where each kβ  is a random vector, 

and let τ  denote the set of parameters )( kττ = , for ck ,,1L= . Then, by the 

independence of series assigned to different clusters, the overall likelihood function is 
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∏
=

=
c
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),,|(),,|( τβθτβθ  

 

where km  is the number of time series that are assigned to cluster kC . Here, the overall 

likelihood is conditional on the set of )2( +pc  values upon which the likelihood function 

of each series is conditioned. 

 

We take as our prior distribution for θ  a Dirichlet ),,( 1 cD αα L , and assign the improper 

prior with density ∏ −

∝
k kf

2
),( ττβ  to β  and τ . Then, using standard results on 

Dirichlet integration, it is easy to show that the marginal likelihood is 
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where 
kk∑= αα  is the overall cluster prior precision,  kn  is the dimension of the vector 

ky , and  kk
T

kk
T

knk
T

k yXXXXIyRSS ))(( 1−−=  is the residual sum of squares in 

cluster kC . The marginal likelihood is well defined as long as each matrix kX  is of full 

rank. 

 

Once the most likely partition has been selected a posteriori, each cluster kC  is associated 

with the parameters kβ , which model the autoregression equation, and the precision kτ . 

The posterior distribution of kkk y,|τβ  is )))((,ˆ( 1−

kk
T

kk XXN τβ  with 

kk
T

kk
T

k yXXX 1)(ˆ −=β , while the posterior distribution of kk y|τ  is 

( )2/)2(),2/( −− qnRSSGamma kk .  The marginal posterior distribution of the 

autoregression coefficients kk y|β  is a non-central Student’s t, with expectation kβ̂ , 

which provides a point estimate of kβ . The estimate of the within cluster precision kτ  is 

( )kk RSSqn /)2( −− . The probability that kCC =  is estimated by 

)/()(ˆ mmkkk ++= ααθ . 

 

In our application, we use a symmetric prior distribution for the parameter vector θ , with 

a common prior precision α . The initial m  hyper-parameters kα  are set equal to m/α  

and, when two time series are assigned to the same cluster kC , their hyperparameters are 

summed up. Thus, the hyperparameters of a cluster merging km  time series will be 
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)/( mmk α . In this way, the specification of the prior hyperparameters requires only the 

global prior precision α , which measures the confidence in the prior model. The current 

implementation of the algorithm assumes that the series follow stationary autoregressive 

models of a given order p, and then checks that the stationarity conditions are met at the 

end of the clustering process. 

 

2.3. Search 

 

In principle, the clustering method described in the previous section requires one to 

compute the posterior probability of each clustering model and then choose the clustering 

model with maximum posterior probability. Since the number of possible partitions grows 

exponentially with the number of series, a heuristic method is required to make the search 

feasible. 

 

Our method uses a measure of similarity between AR(p) models to efficiently guide the 

search process in a subset of all possible clustering models. Since all AR(p) models have 

the same order, this similarity measure   is an estimate of the symmetric Kullback-Liebler 

divergence (Jeffreys, 1946) between marginal posterior distributions of the autoregressive 

coefficients kk y|β  associated with the clusters. The estimate is given by computing the 

symmetric Kullback-Liebler divergence for every pair of parameters jk ββ , , assuming a 

normal distribution conditional on the within-cluster precisions jk ττ , . The precisions are 

then replaced by their posterior estimates. 

 

Initially, the algorithm transforms the time series in S  into a set of m  AR(p) models, 

using the procedure described in the previous section, and computes the set of 

2/)1( −mm  pair-wise distances between posterior distributions of the parameters. Then, 

the algorithm sorts the generated distances, labels in the same way the two closest AR(p) 

models and evaluates whether the resulting clustering model cM , in which the two closest 

AR(p) models are assigned to the same cluster, is more probable than the model sM  in 

which they are distinct. If the probability )|( yMP c is larger than )|( yMP s , the 

algorithm updates the set of series by replacing the two series with the cluster resulting 

from their merging. Consequently, the algorithm updates the set of ordered distances by 

removing all the ordered pairs involving the merged time series, and by adding the 

distances between the parameters of the new AR(p) model and the remaining models in the 

set. The procedure is then iterated on the new set. If the probability )|( yMP c  is not 

larger than )|( yMP s , the algorithm tries to merge the second best, the third best, and so 

on, until the set of pairs is empty and, in this case, returns the most probable partition 

found thus far. The rationale behind this heuristic method is that merging closest AR(p) 

models first should speed up the search for clustering models with large posterior 

probability. Empirical evaluations of the methods on simulated data appear to support this 

intuition (see Sebastiani and Ramoni, 2001). 
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3.  Analysis 
 

We apply the clustering algorithm described in Section 2 to the analysis of the 14 time 

series reporting the temporal evolution of the share of the population engaged in 

tertiary/higher education in 14 European countries depicted in Figure 1. Since the average 

length of a university degree across European nations is three or four years, we applied the 

clustering algorithm under the assumption that all time series were generated by stationary 

AR(3) models with a non-zero mean. We assumed 1=α , the improper prior with density 

∏ −

∝
k kf

2
),( ττβ , and uniform prior on all clustering models. Stationarity of the 

autoregressive models was checked at the end of the clustering process. Figure 2, 3 and 4 

show the three clusters of time series found by the algorithm. 

 

Cluster 1C  groups the evolutions of the proportion of the population enrolled in higher 

education institutes in Portugal and Luxembourg, see Figure 2. The estimates of the 

autoregression coefficients are 657.0ˆ
0 ≅β , 133.1ˆ

1 ≅β , 044.0ˆ
2 ≅β  and 

254.0ˆ
3 −≅β . Thus, the model is stationary — the roots of the polynomial )(uf  are -

2.38, 1.28±0.11i — with a mean %532.8ˆ ≅µ . Note that the time series describing the 

evolution of school population in Luxembourg has a slight increasing trend during the 

1970s, and then becomes stationary, with a mean slightly above 8 %. 

 

Figure 2: Cluster C1 groups the evolution of school population in Portugal and 

Luxembourg 
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The evolutions of the proportion of the population enrolled in higher education institutes in 

Austria, Denmark, Greece, Spain and Ireland are merged into cluster 2C  in Figure 3. The 
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estimates of the autoregression coefficients are 074.0ˆ
0 ≅β , 085.2ˆ

1 ≅β , 233.1ˆ
2 −≅β  

and 138.0ˆ
3 ≅β , with a mean 4.7ˆ ≅µ . The AR(3) model is stationary, with roots of the 

polynomial )(uf  equal to 6.09 and 1.02±0.1i. 

 

Figure 3: Cluster of time series describing the evolution of school population in 

Austria, Denmark, Greece, Spain and Ireland 
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Of the series assigned to this cluster, those describing the evolution of school population in 

Austria, Denmark and Greece are evidently stationary, while the time series describing the 

evolution of school population in Spain and, particularly, Ireland exhibit some trend. The 

assignment of the two series to this cluster could indicate that the increasing trend is only 

temporary, and that the proportion of the population enrolled in higher education institutes 

becomes stable during the 1990s. 
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Figure 4: Cluster merging the evolution of school population in Belgium, France, 

Italy, Finland, the Netherlands, the United Kingdom and Sweden 
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Cluster 3C in Figure 4 groups the evolutions of the proportion of the population enrolled in 

higher education institutes in Belgium, France, Italy, the Netherlands, Finland, United 

Kingdom and Sweden. The estimates of the autoregression coefficients are 015.0ˆ
0 ≅β , 

593.2ˆ
1 ≅β , 283.2ˆ

2 −≅β , and 688.0ˆ
3 ≅β , thus defining a stationary autoregression 

equation, with roots of the polynomial )(uf  equal to 1.023 and 1. ±0.32i. The mean of the 

process is 5.7ˆ ≅µ .  

 

This  cluster groups the European nations that have been consistently stronger from an 

economic point of view in the past 30 years.  All these nations have a solid higher 

education tradition, and university curricula lasting, on the average, four years. All series 

assigned to this cluster are increasing up to the 1980s, and then decrease. This fact would 

be consistent with the large demand for highly-skilled labour and for higher education 

created by the pace of economic development in Europe in the 1960s.  The contraction of 

the population together with the economic recession in the 1980s, could be responsible for 

the decrease of the proportion of population enrolled in higher education in the late 1980s 

and the 1990s. 

 

The means of the processes generating the time series assigned to clusters 2C  and 3C  are 

essentially the same. However, the autoregressive equation for cluster 3C  describes a more 

stable process around the mean, with smaller fluctuations. Thus, the results would suggest 

a more stable higher education enrolment in Italy, France, the Netherlands, United 
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Kingdom, Belgium, Finland and Sweden, compared to Austria, Denmark, Greece, Spain 

and Ireland.  

 

The fact that the time series describing the evolution of the population in higher education 

of the Netherlands is assigned to the third cluster is slightly disappointing: the dynamic of 

this series is similar to that of the other series in the cluster, but this series has a different 

mean. To evaluate the influence of this time series on the results, we run the clustering 

algorithm excluding the time series of the Netherlands. The algorithm found the same three 

clusters, thus showing that this series is not ‘influential’. 

 

Figure 5: Observed (continuous line) and fitted (dash line) time series in the clusters 

in Figure 2 
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During the analysis we assumed the time series were generated by AR(3) models. Plots of 

the observed and fitted values within clusters provide an overall assessment of the 

robustness of the result with respect to this assumption. Figure 5 plots the time series of 

observed values in the three clusters and values fitted using the AR(3) models associated 

with each cluster. The close match supports the assumption that AR(3) models are a good 

approximation of the processes generating the original 14 series. 

 

 

Finally, we note that the search algorithm found the three clusters of time series in just 18 

steps. This number is much smaller than the total number of clusters to be considered 

without the heuristic search. Figure 6 shows the increase of the log-marginal likelihood — 

up to a constant — at each step of the agglomerative search procedure. In the first seven 

steps, there is a linear increase of the marginal likelihood. Thus, merging the time series 

that belong to the clusters with nearest autoregressive coefficients increases the marginal 

likelihood. In the next eight steps, merging the closest clusters does not always increase the 

marginal likelihood, so that the merging of the ‘second best’ is evaluated and accepted. 

This is so until step 15, when the algorithm has merged the 14 time series into three 

clusters. At this point, the three possible merging of two clusters at a time are evaluated 

and, since they all result in a decrease of the marginal likelihood, the algorithm stops and 

returns the three clusters so found. 

 

Figure 6: Change of the marginal likelihood, in logarithmic scale, at each step of the 

agglomerative search procedure 
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4.  Discussion and related work 
 

Autoregressive models have received great attention, (see Box and Jenkins, 1976, for a 

systematic exposition and West and Harrison, 1997, for a Bayesian analysis). Bayesian 

model-based clustering was originally proposed by Banfield and Raftery (1993), to cluster 

static data.  Ramoni et al. (2000, 2001) proposed a Bayesian clustering by dynamics 

algorithm, called BCD, to cluster discrete time series. BCD clusters time series modelled 

as Markov chains and, contrary to popular methods, finds also the number of clusters. 

Notwithstanding the somewhat restrictive Markov chain assumption, BCD has been 

applied successfully to cluster robot experiences based on sensory inputs (see Sebastiani et 

al., 2001), simulated war games (Sebastiani et al., 1999), as well as the behaviour of stocks 

in the financial market and automated learning and generation of Bach’s counterpoint. 

 

Unlike BCD, the algorithm used in this paper clusters time series of continuous variables. 

The different type of data requires different modelling assumptions thus producing an 

algorithm which is similar to BCD, in being Bayesian and model-based, but its 

methodology is novel. The heuristic search used by the clustering method is similar to that 

implemented in BCD although, here, the search is driven by a distance between posterior 

distributions of parameters characterising the AR(p) models of different clusters, while in 

BCD the search uses the distance between predictive distributions of estimated Markov 

chains. 

 

The model selection strategy of our algorithm seeks the clustering model with maximum 

posterior probability. Other choices here would be possible such as selecting the median 

posterior probability model (Barbieri and Berger, 2000). One would need to compare these 

different model choices and see whether a similar heuristic search can be developed when 

the algorithm seeks for the median posterior probability model. 

 

At first glance, modelling time series with autoregression equations of the same order may 

appear to be a severe restriction. We have investigated the limitation of this assumption in 

simulated data (see Sebastiani and Ramoni, 2001) and the emerging result is that the 

results of our clustering method are robust to misspecification of the autoregressive order. 
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Abstract 
 

Record linkage refers to the use of an algorithmic technique to match records from 
different data sets that correspond to the same statistical unit (Belin and Rubin, 1995). 
In this paper, we propose a fully Bayesian approach to record linkage. We use standard 
Metropolis-Hastings and simulated annealing algorithms to derive the marginal 
posterior distribution of a matrix-valued parameter which indicates the ‘configuration’ 
of matches between the two lists. We suggest using different inferential summaries of the 
posterior: in particular, we discuss the use of the posterior mode. Alternatively, we sketch 
the possibility of using a formal Bayesian decision theory approach. 

 

 

1.  Introduction 
 
Record linkage refers to the use of an algorithmic technique to match records 
from different data sets that correspond to the same statistical unit (Belin and 
Rubin, 1995). The need for record linkage is ubiquitous in official statistics. For 
example, record linkage is a necessary preliminary step when the size of a 
population is estimated via capture–recapture techniques, especially when the 
target population is elusive (non-regular immigrants in the European 
Community are an example) and differences in identification variables in the 
two occasions are frequent. Another example, particularly important for 
Statistical Institutes, is given by the possibility of using administrative databases 
in order to complete files in a survey, relieving the response burden. 

 

Suppose we have two computer files AX  and BX  whose records relate 
respectively to units (e.g. individuals, firms) of partially overlapping 
populations A  and B  and consist of several fields, or variables, either 
quantitative or qualitative. For example, in a file of individuals, fields can 
be ‘surname’, ‘age’, ‘sex’, etc. The objective of record linkage is to find all 
the pairs of units ( )a,b , A∈a  and B∈b , such that a  and b  refer actually to 
the same unit. Hence, a record linkage procedure is a decision rule which, 
for each single pair of records, can take only three decisions: link, possible 
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link and non-link (see Fellegi and Sunter, 1969). The decision rule is based 
on the comparison of the common fields of the two files of records, which 
are denoted key (or matching) variables. We assume that the key variables 
jointly identify any single individual of the population. However, the key 
variables are likely to be observed with errors which make the linkage 
process not trivial. 

 

From a classical viewpoint, the decision rule is chosen in order to minimise 
the expected number of no-decisions (Fellegi and Sunter, 1969). As a 
measure of performance of the procedure, the false match rate (FMR), 
defined as the number of false declared matches divided by the total 
number of declared matches, can be adopted. Belin and Rubin (1995) 
propose a method of estimation for FMR. 

 
In this paper we propose some Bayesian strategies for record linkage. The 
Bayesian framework is particularly suitable for the solution of the following 
problems: (1) exact computation of the probability that each pair is a match, 
conditional on the observed data (the comparison of the key variables); (2) 
computation of conditional probabilities that more pairs are simultaneously 
matches. The first point relies on the fact that probabilities obtained by 
conditioning on observed events are more directly interpretable than those 
obtained by conditioning on unobservable hypotheses. The second represents 
an improvement to the classical methods, where decision rules establish 
separately for each pair whether they refer to the same unit or not, without 
considering the compatibility constraints, unless additional procedures based 
on operational research techniques are used (see Jaro, 1989). 

 
In this paper we consider, as the quantity of interest, a matrix-valued 
parameter c  which represents the true pattern of matches between the two 
lists. We obtain an MCMC sample from the marginal posterior distribution of c  
and we discuss several possible inferential summaries. In particular we 
propose the use of the posterior mode(s) as point estimate(s) of c . Furthermore 
we briefly introduce alternative estimates; one is based on a decision-theoretic 
approach, using a loss function that justifies FMR as a measure of performance 
of record linkage techniques; the other is a more eclectic approach which 
slightly deviates from the Bayesian road at the reward of a more flexible 
analysis. There are not many papers on Bayesian analysis of record linkage and 
related problems. Fienberg et al. (1997) give a Bayesian model that formalises 
comparisons of a set of variables observed in two distinct occasions given in a 
disclosure problem. Larsen (1999) outlines another Bayesian approach for 
record linkage which uses a mixture model. 

 
The combinatorial nature of the record linkage problems makes the analytic 
use of the posterior distribution of the parameters involved practically 
impossible; the use of a simple MCMC algorithm (basically a Metropolis-
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Hastings one plus a simulated annealing optimisation step) renders the 
analysis computationally feasible even for blocks of units (see below) as 
large as 100, although we feel that dramatic improvements can be expected 
and we are currently working along this direction. The usual list sizes of 
record linkage analyses are very large. In practical applications, however, it 
is always the case that the entire data sets are divided into blocks, 
according to some reliable key variable (such as the geographic blocks 
described in Jaro, 1989). In fact, very small blocks will force false non-
matches (missed matches), but very large blocks will increase computing 
and allow more false matches. The results would depend strongly on the 
quality of the matching information. We believe that record linkage 
procedures which are able to manage blocks as large as 100 units per block 
can be usefully applied in practice. 

 
Throughout the paper, random variables will be denoted by capital letters 
and the lower case will be used for the corresponding realisations. Both 
matrices and vectors will be denoted by bold characters. Sets will be 
denoted by calligraphic characters. 
 
 
2.  The statistical model 
 
Following Fellegi and Sunter (1969), let BA ×  be the set of ordered pairs of 
records, i.e. ( ){ }BABA ∈∈=× b,ab,a  : . We can split the set BA ×  into two 

disjoint sets: the set of matches, namely ( ){ }bab,a == :M  and the set of 

non- matches, ( ){ }bab,a ≠= :U . We denote with S  the cardinality of a set 

S . It is worth noting that M  is typically much smaller than U . 

 
Let ( )kX,,X,X K

21
 be the key variables observed on the two sets of 

units A  and B . The corresponding design matrices are defined as 

{ }A

A j,ax=x  and { }B

B j,bx=x , where A

j,ax  denotes the observation of the variable 

jX  on the a -th unit of the A  list, Aν,,,a K21= , and B

j,bx  corresponds 

to the observation of the same variable on the b -th unit of the set B , 

Bν,,,b K21= , k,,,j K21= . 

 
In order to assess whether unit A∈a  and unit B∈b  are actually the same 
unit, it is crucial to give a reasonable definition of the comparison between 
the corresponding observed vectors, i.e. the a -th row in Ax  and the b -th 

row in Bx . 
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The comparison between two individuals ( )a,b  is expressed by a vector of k  

indicator functions ( )Tab

k

ababab y...,,y,y
21

=y , where 

 



 =

=
otherwise0

1 BA

j,bj,aab

j

xx
y

 if
. 

(1) 

 

The overall comparison space will be denoted by D . 

 

Definition (1) is still applicable in the case of blank components in one or 
both the matrices Ax  and Bx . One simply assumes that the indicator function 
ab

jy  is equal to 1 if and only if A

j,ax  and B

j,bx  are both not blank and equal. 

 
The observed indicator functions ab

jy  can be considered as observations of 

k×× BA νν  random variables, each one defining the occurrence of 

differences between the vectors A

ax  and B

bx  in the two lists and their 

corresponding probabilities. The probability model relative to these 
observations can be defined as follows. 
 
 
2.1.  The likelihood function 

 
Consider first the set of pairs ( )a,b  that correspond to true matches, i.e. the 

pairs in M . Ideally, if the key variables were observed without error, and if 
individuals present in both files answered coherently in both the occasions, 

then the comparison vector ( )Tab

k

ababab y...,,y,y
21

=y  should be a vector 

composed of 1s. However in large data sets it is very likely to have errors in 
the answers, typing errors and inconsistencies between answers to the same 
question in different times. As a consequence, one should allow the vector 
of comparisons between the key variables ab

y  to assume, with appropriate 

probabilities, all the k2  combinations of 0’s and 1’s in a k -dimensional 

vector. In addition, we assume the random vectors ab
Y  associated to each 

pair ( ) M∈b,a  are i.i.d. conditionally on pairs within M . The most natural 

distribution for the ab
Y s is the multinomial one, i.e. 

 

( ) imiY mm,cP
ki...,,i,ib,a

ab ====
21

1   D∈i , (2) 

 

where b,ac  is the indicator of the membership of the pair ( )a,b  to M . 
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In this notation, the matrix { }b,ac=c  becomes the actual parameter of 

interest in a record linkage procedure. We assume that the matrix c  can 
take values on the set C  of all the matrices satisfying the following obvious 
consistency conditions: 
 

{ }









∈∀≤

∈∀≤

∈∈∀∈

∑

∑

=

=

B

A

B A

A

B

bc

ac

ba,c

a b,a

b b,a

b,a

 1

 1

 , 10

1

1

ν

ν
. 

 

(3) 

 

It is worth noting that imposing constraints on a parameter space is straightforward in a 

Bayesian approach. On the other hand, this is very complicated from a frequentist 

perspective. Consequently, currently used record linkage procedures must complete the 

statistical data analysis with a reallocation procedure which eliminates inconsistencies 

among the results of different tests (see Jaro, 1989, and the problem posed by Larsen, 

1999, paragraph 3.3): this is automatic in a Bayesian framework. 

 

The same argument used for (2) can be applied to all the pairs in U . We 

define: ( ) iuiY uu,cP
ki...,,i,ib,a

ab ====
21

0 , D∈i , where the random 

comparison vectors ab
Y  are still multinomial, with a different set of 

parameters, u . 
 

The likelihood function for m , u , and c  associated with the observed matrix y  is: 

 

( ) ( ) ( )

( ) ( )( )
∏

∏∏ ∏∏

∈

−

= =

−

∈∈

∑∑=

=















=

D

DD

A B

i

iy

i

iy

i

i

iy

i

i

iy

iyumc

b,a b,a
ab

b,a b,a
ab

b,a
ab

b,a
ab

c,dc,d

a b

c

,d

c

,d

um

um,,L

1

1 1

1ν ν

 

 

 

 

(4) 

 

where, for every D∈i , 

( )


 =

=
otherwise0

1 iy
iy

ab

ab ,d
 if

. 

 

The likelihood function (4) could be also analysed from a mixture model 
perspective, with a fixed number of components (matches, non-matches); 
see Winkler (1994, 1995), Larsen (1999), Larsen and Rubin (2000) and 
references therein. 
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The likelihood (4) is more than saturated and consequently cannot be managed 
in a classical framework unless severe restrictions are posed on the 
dependence structure among the comparison variables ab

jY , k,,,j K21= , 

(see for instance Fellegi and Sunter, 1969, Jaro, 1989, Winkler, 1993). In a 
Bayesian framework this is done by modelling the (conditional) prior 
distribution of m     and u . 
 
2.2.  The prior distributions 

 
The likelihood function (4) depends on two sets of parameters: the parameters of 
interest (the matrix c ) and two vectors of nuisance parameters (m     and u ). In 
real applications, for both sets of parameters it is reasonable and typical to have 
some kind of information which should enter the analysis in terms of suitable 
prior distributions. From now on, we will consider c , m     and u  as random 
objects whose prior distributions are discussed in the following. 

 
The prior distribution for the random matrix C  can be given in two steps. 
The first step consists of a prior distribution ( )hHπ , BA νν ∧= ,,,h K10 , 

on the number of matched pairs H  in the two lists. This is usually the step 
where the researcher can collect information easily, looking at previous 
experiences or at the statistical characteristics of the data sets (e.g. if the 
two data sets refer respectively to a census and a sample, we can expect a 
large number of matched pairs). The second step consists of a conditional 
distribution of the configurations C  given the number of matches. The prior 
distribution for C  is defined by the relationship: 

 
 ( ) ( ) ( )hHPhP H ==== cCcC π , (5) 

 

where the first equality holds because ( ) ( )hHPP ==== ,cCcC , for suitable h . Here 

we propose a reasonable and natural prior distribution for C , according to (5). 

Define 
hC  as 









=∈= ∑
b,a

b,a

h hc:CC c   BA νν ∧= ...,,,h 10 . 

 

Then we adopt a uniform conditional prior distribution for ( )hH =C  over 
hC . Different priors can be chosen for H . Here, for convenience, we adopt a 

binomial distribution with parameters BA νν ∧  and ξ . 

The latter should reflect our beliefs on the most probable number of 
matches (e.g. ξ  could be calibrated as an average relative frequency of 
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observed matches in previous and similar applications), while the former is 
a flat distribution since, in general, we do not possess, a priori, information 
able to distinguish between different pairs. However both the previous prior 
distributions can be reasonably modified in order to take into account 
additional and more specific information (Larsen and Rubin, 2001). 

 
Although not of primary interest, the nuisance parameters m  and u  play an 
important role in the model. Previous approaches to record linkage 
developed a complex machinery (involving the EM algorithm and strict and 
often arbitrary hypotheses on the statistical model) in order to obtain 
reasonable estimates of m  and u . In a Bayesian view, one simply integrates 
out the nuisance parameters from the likelihood (4), after having specified a 
suitable prior (conditional on c ). 

 
In what follows, we will assume that the random vectors M  and U  are a 
priori independent of C  and, for computational reasons, we assume that M  
and U  follow a Dirichlet distribution: M ~ ( )α ;

1
⋅

−D
D and U ~ ( )β ;

1
⋅

−D
D , 

where 0>iα  and 0>iβ , D∈∀ i . In addition, we also assume a priori 

independence between the r.v.’s M  and U , i.e. independence between the 
available information on the two different multinomial parameters m  and 
u . The calibration of the hyperparameters is crucial, and deserves some 
comments. 

 
In our experiments, we choose the following parameterisation: 

 
 ∑

= =
−

k

j ji
1

φ

θα i   D∈i , 0>θ  R∈φ . 
(6) 

 

Similarly we set 

 

 ∑
= =

−
k

j ji
1

φ

θβ i   D∈i , 0>θ  R∈φ . 
(7) 

 

This choice models our beliefs on the informative power of the comparison 
variables. In fact, the hyperparameters (6) hierarchically order the possible 
observations D∈i  in such a way that the prior distribution for M  puts 
more mass around ‘large’ values of im  for those i s with a large number of 
1s. The opposite argument holds for the hyperparameters (7). 

 
In particular it can be easily shown that, by introducing the 
hyperparameters as in (6) and (7), the marginal prior means of the im s and 

the iu s are simple functions of θ  only, whereas their variances depend on 

both θ  and φ . The hyperparameters in (6) and (7) have also direct effects 
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on the statistical relationship among the comparison variables. For instance 
standard arguments prove that the correlation between two comparison 
variables has a null expected value for any θ  and φ , whereas its variance 
depends on both. These considerations can guide the calibration process of 
the hyperparameters. 

 
We want to stress the fact that the choice of the prior distributions for m  
and u , instead of inducing one particular association among comparison 
variables within the match and non-match groups (as in the EM case), 
defines a distribution over all the possible dependence structures. We 
expect that this situation makes our model more flexible; however, deeper 
investigations are needed in order to explore the connections among prior 
distributions for m     (and u ) and dependence structure on the comparison 
variables. 
 
 
3.  Posterior analysis 
 
The likelihood function for the parameter of interest C  can be obtained 
analytically by integrating out the nuisance parameters m  and u . Standard 

use of Dirichlet integrals and the fact that, for all ( )b,a , ( )∑ =
i

iy 1,d ab , 

provide the following expression 
 

( )
( )[ ]( ) ( )( )[ ]( )

( ) ( )∑∑

∏ ∑∑

∈∈

∈

+−×+

+−+
∝

DBAD

D

i ii i

i ii iyiy
yc

βννΓαΓ

βΓαΓ

hh

c,dc,d
L

b,a b,a

ab

b,a b,a

ab 1
. 

 

The unnormalised posterior distribution for C  is then given by 
 

 ( ) ( ) ( ) ( )yccCycC LhHPhP H ==∝= π . (8) 

 

Note that the integrated likelihood function and, a fortiori, the posterior distribution 

explicitly depend on h , the true number of matches. 

 
3.1.  The posterior distribution 

 
We now discuss how to use the posterior distribution (8) in a record linkage 
analysis: this problem is in fact peculiar enough to suggest alternative 
strategies to obtain inferential summaries of the marginal posterior 
distribution for the parameter of interest. In a record linkage analysis the 
whole matrix C  is the parameter of interest and the problem is rather 
complicated, due to the fact that there are no simple ways to synthesise 
information on C  from the posterior distribution; in particular there is not a 
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natural ordering among the possible values of C . Once we know the 
posterior distribution of C , it is not clear for example how to produce a 
point estimate (but remember that the practical goal of a record linkage 
problem is exactly to produce a point estimate of C !). In fact, the posterior 
mean does not seem reasonable here while the posterior median is even 
hard to define. The posterior mode is certainly more appealing, although it 
typically suffers from a certain degree of sensitivity to prior distribution, 
especially when Aν  and Bν  are large. More formally one should construct a 

specific loss function in order to minimise the posterior expected loss. Here 
we mainly consider the posterior mode as our point estimate. In the next 
section we will suggest alternative approaches which can be easily 
implemented and which will be explored elsewhere. 

 
To illustrate the implementation of the methodology just described, we 
conducted a simulation study via perturbation of real data. The following 
application is based on individual data collected in October 1998 in the 
context of the test for the 2001 Italian Census of Population and Housing. 
Key variables are sex, day of birth, month of birth, year of birth, marital status, 

occupational status, relationship to head of household, and highest educational 

qualification. We have considered two data sets with a known number of 
matches and then we have deliberately ‘introduced’ errors at various 
extents according to a ‘completely-at-random’ mechanism. Two different 
error rates used for generating the perturbed data were selected on the 
basis of the available information from previous and similar surveys; the 
two error rates (respectively column 1 and 2 in Table 1) represent different 
quality standards we can expect from the key variables. 
 

Table 1: Total error rates introduced in each fileTable 1: Total error rates introduced in each fileTable 1: Total error rates introduced in each fileTable 1: Total error rates introduced in each file 
 

 

Key variables 

 

 

Low degree of distortion 

 

 

High degree of 

distortion 

 

   

Sex 0.02 0.04 

Day of birth 0.04 0.08 

Month of birth 0.03 0.06 

Year of birth 0.03 0.06 

Marital status 0.06 0.12 

Occupational status 0.24 0.48 

Relationship to head of household 0.04 0.08 

Highest educational qualification 0.22 0.44 
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As ξ  is felt to be the most critical prior choice, we have considered in the 

simulations two different values of ξ , namely =
1
ξ 0.6 and =

2
ξ 0.9. 

 
In the spirit of the considerations on the calibration of the hyperparameters 
given in the previous section, we choose 2=θ  and 42 == /kφ , where k  is 
the number of key variables. In a real application, a hierarchical Bayesian 
analysis which includes genuine prior information for the hyperparameters, 
ξ , θ  and φ  can also be performed. We will explore these issues elsewhere. 

 
We used a Metropolis-Hastings algorithm to generate a sample from the 
posterior distribution and a simulated annealing routine to find the 
posterior mode(s) (details and computer codes are available upon request). 
This procedure has been applied in four distinct cases according to a 
combination of the input characteristics described previously (see the first 
part of Table 2). Each single list has been partitioned into four blocks with 
dimensions ranging from 79 to 100. In Table 2 we summarise results on the 
goodness of the posterior mode estimate (for each pair of blocks being 
compared, f represents the fraction of units in the smallest block which are 
actually matches; CMR is the correct match rate, i.e. the ratio of the 
observed number of true links and the number of matches). 
    

Table 2: Input and oTable 2: Input and oTable 2: Input and oTable 2: Input and output characteristics of four examplesutput characteristics of four examplesutput characteristics of four examplesutput characteristics of four examples 
 

Input characteristics Case 1 Case 2 Case 3 Case 4 

     

Degree of distortion Low High Low High 

ξ  0.60 0.60 0.90 0.60 

f 0.76 0.80 0.96 0.96 

     

Output parameters     

     

CMR 0.93 0.56 0.99 0.98 

FMR 0.03 0.12 0.01 0.01 

     

 

Results are encouraging. In almost all the cases the FMR is remarkably low; 
also, in all the simulations the posterior probability of the true matrix 
configuration *

c  is close to the posterior modal probability. Further analysis 
is however necessary to verify the sensitivity to other prior inputs (i.e. the 
hyperparameters αααα  and ββββ ). 
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A second, more formal Bayesian approach is based on the use of a loss 
function to produce a final decision. In the record linkage context the action 
space for selecting a point estimate of the matrix c  is naturally given by the 
parameter space C . A popular measure of performance in the record 
linkage literature is given by FMR. However, FMR considers only one kind 
of mismatches because it does not take into account the percentage of false 
unmatched units. Also, the FMR can be evaluated, in real applications, only 
after ‘the urn has been opened’; in other words heavy clerical work is 
necessary to compute the FMR. To overcome this problem, Larsen and 
Rubin (2000) propose, as a measure of performance, a sort of posterior 
expected value of the FMR, although their analysis cannot be considered 
fully Bayesian. We put forward these ideas by defining a loss function which 
is based on FMR and the false unmatch rate (FUR) also. More formally, let 

*c  be the true 

configuration value and let ( )⋅BI  be the indicator function of the set B . We define the 

loss function of taking the decision C∈c  as follows: 
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It is easily seen that the posterior expected loss associated with a decision c  is 
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Denoting with ( ){ }icb,a b,ai == :F , 10,i = , it can be proved that the posterior 

expected loss of c  is given by 
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(9) 

 
where h  is the number of matches in c . The minimisation of (9) can be faced, for 

instance, with an algorithm able to discover for each BA νν ∧= ...,,,h 10  the partial 

optimal solution for the subset 
hC . The configuration with lowest posterior expected loss 

(9) in 
hC  is obviously the one with lowest ( )

( )∑
∈

=
1

0
Fb,a b,aCP y . If 0=h  the solution is 

trivial; for fixed 1≥h , this problem can be formulated in terms of the following 

assignment problem (see Lawler, 1976, Chapter 8): find the constants b,ac  such that 
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( ) ( )
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is maximum, subject to the constraints 
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This assignment problem can be solved, for instance, via the Hungarian Method, that finds 

the optimal configuration for each h , BA νν ∧= ...,,,h 10  (Lawler, 1976, p. 204). 

Denoting with 
h
c  the configuration with lowest posterior expected loss in 

hC , the global 

optimal solution is 

( ){ }BA νν ∧== ...,,,h,W h* 10  min arg cc . 
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