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A STRUCTURAL TIME SERIES MODEL
FACILITATING FLEXIBLE SEASONALITY

Yoshinori Kawasaki ∗
The Institute of Statistical Mathematics,

Research Organization of Information and Systems,

4–6–7 Minami Azabu, Minato-ku, Tokyo, 106–8569, Japan

Abstract

We shed light on a class of models that increase the flexibility of the seasonal pattern
within a framework of the structural time series model. The basic idea is to drive the sea-
sonal summation model by a moving average process rather than by a white noise or an AR
process. Generally, such an approach can be exhaustive in parameters, but the proposed
model is parsimonious in the sense that we have only one extra parameter compared to
the basic structural time series model. Because we stay at the linear Gaussian assumption,
the estimation is quite easy and fast. The state space representation of the model is also
given. An interpretation of moving average driven seasonal model is provided in terms
of the offset effect on the pseudo-spectrum around the seasonal frequencies. The empiri-
cal analysis demonstrates that the proposed method is richly expressive in estimating the
seasonal component, and is also supported by the minimum AIC procedure. A few cases
where the proposed method is not working well provide us some useful information on the
possible misspecification. Focusing attention on the two key quantities implied by the esti-
mated models, we propose a graphical representation for the estimated models that help us
to discover the unsuccessful cases and to confirm whether or not the alternative specifica-
tion improves the modeling.

Subject Area: Seasonal adjustment techniques: comparison of alternative methods

1 Introduction
Time series with trend and seasonal components is an important generalization of nonstationary
mean time series. Such time series occur for example in meteorological, oceanographic and
economic studies. Trend and seasonal, given time index t, are the unobserved components to
be squeezed out of the original observation. This ill-posed nature requires the introduction of
reasonable stochastic constraints on the unobserved components, which leads to some Bayesian
treatment. One of the earliest works of such Bayesian modeling is perhaps Harrison and Stevens
(1971). Akaike (1980) presented a sophisticated methodology on Bayesian seasonal adjustment

∗Associate Professor at Department of Statistical Modeling, The Institute of Statistical Mathematics. E-mail:
kawasaki@ism.ac.jp
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method which admits computationally straightforward penalized least squares methods. In esti-
mating such a decomposition problem in a Bayesian framework, a Markovian representation via
state space form is very useful. Kitagawa (1981), Gersch and Kitagawa (1983) and Kitagawa
and Gersch (1984) extended the ideas in Akaike (1980) to state space formulations and incor-
porated seasonal decomposition features. Harvey and Todd (1983) and Harvey (1984, 1985)
went side by side along with this line of research though a Bayesian point of view is not very
much stressed. West et al. (1985) and West and Harrison (1986) developed a fully Bayesian
framework while Akaike’s methodology (and his follower’s too) can be regarded as empirical-
or quasi-Bayesian approach. In this paper we consider the modeling of nonstationary mean time
series with trend and seasonal by state space methods.

The economic application of seasonal adjustment time series have provoked an extensive
literature and a variety of software. Popular software products based on state space modeling
are Kitagawa’s DECOMP in TIMSAC 84 (Akaike et al. , 1985) and STAMP (Koopman et al.
, 2000) initially developed by Harvey. Empirical researchers using such softwares sometimes
complain that the estimated seasonal patterns are very steady considering the use of the stochas-
tic seasonality. In a state space modeling, the most commonly used seasonal component model
is the stochastic dummy seasonality, that is, the sum of seasonal factors within a period fol-
lows zero mean white noise. Frequently observed stiff seasonal patterns are rather due to this
stochastic dummy specification, not to the state space formulation itself.

One way to increase the seasonal variability is to introduce a fat-tailed distribution for the
innovation of seasonal component. In Kitagawa (1989), the spline based numerical integration
developed in Kitagawa (1987) is applied for seasonal adjustment, while Kitagawa (1994) pro-
poses a new implementation for the Gaussian-sum smoother. Monte Carlo filter presented by
Kitagawa (1996) is also applicable to a non-Gaussian seasonal adjustment. A method proposed
by Shephard and Pitt (1997) is also applicable though their presentation puts emphasis on non-
Gaussian measurement. However, these techniques are more likely to be instrumental to depict
the abrupt change in the seasonal pattern or to detect the outliers automatically, or when the
measurement distribution is primarily non-Gaussian. In addition, there still remains a computa-
tionally intensive task, and often a user-friendly tool is not available for practitioners to perform
it.

The aim of this article is to present a new model to increase the flexibility and variability of
seasonal pattern within a framework of structural time series model. We still stay at the linear
Gaussian assumption, hence the estimation is quite easy and fast. The empirical analysis per-
formed in this article demonstrates that the proposed method is richly expressive in estimating
the seasonal component, and that such a decomposition is supported in terms of one-step ahead
prediction, too.

This paper is organized as follows. In section 2 we briefly review the framework of basic
structural model for time series with trend and seasonality. A state space form for the BSM and
its estimation algorithm are also reviewed in subsection 2.2 and 2.3. In section 3, a parsimonious
modeling to produce flexible seasonality is presented. After introducing some existing methods
in subsection 3.1, a model with seasonal summation driven by a finite order moving average
process with a single unknown parameter is proposed in subsection 3.2. A state space form for
the proposed model are described in section 3.4. Section 4 details the results of the empirical
analyses on 11 economic time series of U.K. and Japan. Section 5 concludes this article.
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2 Modeling Trend-Seasonality

2.1 Basic Structural Model
As a basis of the discussion of this article, this section explains a popular model called basic
structural model. Modeling trend-seasonality with state-space form have been explored since
the end of 1970’s. Trend and seasonal are regarded as unobservable components, and for each
unobservable component a stochastic model is assumed. One of the most popular specification
is a set of the equations described as follows.

yt = μt + γt + εt (1)
μt = μt−1 +βt−1 +ηt (2)
βt = βt−1 +ζt (3)

γt = −
s−1

∑
j=1

γt− j +ωt (4)

In above equations, we assume that each of εt , ηt , ζt , ωt follows zero mean normal distribu-
tions but with different variance; σ 2

ε , σ 2
η , σ 2

ζ and σ 2
ω respectively. This set of equations is often

referred to as Harvey’s basic structural model (BSM hereafter), see Harvey (1989, p.47). Equa-
tion (1) is called observational (or measurement) equation. This reflects our observation that the
salient features of economic time series are trend μt and seasonality γt , and the rest is regarded
as irregular component εt .

Trend component consists of two latent variables μt and βt , which is respectively referred
to ‘stochastic level’ and ‘stochastic slope’. The equation (2) plus (3) is called the local linear
trend model. The name comes from the fact that the drift term βt plays a role of a linear trend
rather than a constant in (2). On the other hand, it is also possible to consider the following
trend model in stead of (2) plus (3);

μt = 2μt−1 −μt−2 +ηt . (5)

If we rewrite (5) as μt = μt−1 +(μt−1 −μt−2)+ηt , it is easily understood that (5) is a special
case of the local linear trend model in the sense that the stochastic slope βt is also driven by the
same process ηt rather than by a different process ζt . From now on, trend model is fixed to (5)
in this article, and the seasonal adjustment model (1) together with (5) and (4) will be referred
to the BSM again, as this will make no confusion here.

2.2 State Space Form
In order to facilitate the introduction of extended models in the next section, we sum up the basic
outline of the state space representation of the BSM and its estimation. Due to the assumption
of no correlation among innovation and noise process, the state space representation can be built
up as a composition of small state space models for the individual components. To save space,
we assume s = 4 just for the presentation purpose. From equation (5) and (4), it turns out that
the essential quantity that determines the present distribution of μt and γt will be given by a
vector

αt−1 = (μt−1,μt−2,γt−1,γt−2,γt−3)′ (6)

3



where the prime (′) denotes the transpose of a vector or a matrix. By setting submatrices as
follows,

T 1 =
[

2 −1
1 0

]
, T 2 =

⎡
⎣ −1 −1 −1

1 0 0
0 1 0

⎤
⎦ , R1 =

[
1 0
0 0

]
, R2 =

⎡
⎣ 0 1

0 0
0 0

⎤
⎦ ,

new matrices T and R are defined as

T =
[

T 1 O
O T 2

]
, R =

[
R1
R2

]
, ηt =

[
ηt
ωt

]
. (7)

Then the transition of the state vector can be written in a matrix notation as

αt = T αt−1 +Rη t . (8)

As we observe that the measurement equation (1) just extracts and adds the components μt and
γt , defining z′ = (1,0,1,0,0) yields the relation between the observation and the state as

yt = z′αt + εt . (9)

Now the BSM is put in a state space form by (8) and (9). Note that the specification of αt , T ,
R and z′ described above is not a unique one because the transformations of these vectors and
matrices by a regular square matrix still give rise to the same state space model.

2.3 Model and State Estimation
Let at−1 denote the minimum mean squared error (MMSE) estimator of αt−1 based on the
observations up to time t − 1. Let Pt−1 denote the m×m covariance matrix of the estimation
error, i.e.

Pt−1 = E[(αt−1 −at−1)(αt−1 −at−1)′].

Given at−1 and Pt−1, the MMSE estimator of αt and the covariance matrix of the estimation
error is given by

at|t−1 = T at−1

Pt|t−1 = T Pt−1T ′ +RQR′

where Q = diag(σ 2
η ,σ 2

ω). These two equations are known as the prediction equations.
Once the new observation, yt , becomes available, the estimator of αt , at|t−1, can be updated.

The updating equations are given by the following two equations,

at = at|t−1 +Pt|t−1z′ f−1
t (yt − z′at|t−1)

Pt = Pt|t−1 −Pt|t−1z′ f−1
t zPt|t−1

where ft = z′Pt|t−1z + σ 2
ε . Repetition of prediction and updating constitutes so-called the

Kalman filter.
Unless σ 2

ε = 0, the estimation problem of a state space model is double-folded. Given the
unknown hyperparameters ψ =(σ 2

ε ,σ 2
η ,σ 2

ω)′, running Kalman filter and fixed interval smoother
yields the estimates of unobservable components {μ̂t}T

t=1, {γ̂t}T
t=1 and hence {ε̂t}T

t=1. The
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vector of unknown parameters, ψ , can be estimated by the maximum likelihood method. The
likelihood function for a time series can be decomposed into the product of the density functions
of one step ahead prediction error vt = yt −z′at|t−1. The variance of observation noise σ 2

ε usually
can be concentrated out of the likelihood function. Let ψ∗ = (σ 2

η ,σ 2
ω)′, then

logLc(ψ∗) = −1
2

{
T log2πσ̃ 2(ψ∗)+

T

∑
t=1

log ft +T

}

must be maximized with respect to the unknown parameters ψ∗, while σ̃ 2(ψ∗) is given by

σ̃ 2(ψ∗) =
1
T

T

∑
t=1

v2
t
ft

.

Model comparison will be done based on AIC (Akaike, 1973). As regards the initial state
settings, we employ the ‘large κ approximation’ (Harvey, 1989, pp.121). The specific value for
κ employed here will be stated in section 4 in conjunction with the scale of the time series. Once
the unknown hyperparemeters are estimated, then the unobserved components are estimated by
the fixed interval smoother. For the algorithm of the fixed interval smoother, see Anderson and
Moore (1979, pp.187–190), Harvey (1989, pp.154) or Kitagawa and Gersch (1996, pp.58).

3 Parsimonious Modeling toward Flexible Seasonality
In this section, three seasonal component models which will be compared in the real data analy-
sis section 4 are presented. In the subsection 3.1, the standard model (the BSM) and its existing
modification are presented. In the section 3.2, a parsimonious modeling of MA driven seasonal
summation will be introduced.

The basic motivation of this paper is to examine the appropriateness of a new seasonal
model which increases the variability of the seasonal component. However, it is not because
we believe that larger variance of the seasonal component is desirable. What is sought in this
paper is, at first, to prepare the framework which allows us to estimate more flexible seasonal
component than the BSM, and secondly, to investigate through empirical analysis whether such
a model is really favored or not in terms of a model selection criterion. If we estimate a sea-
sonal ARIMA model and try to decompose it to do seasonal adjustment, it is known that there
is no unique solution for such a decomposition. Then we must place an arbitrary assumption on
the allocation of the variance contributions among trend, seasonal and other components under
consideration. For example, Box et al. (1978) asserts that the variance of the seasonal compo-
nent should be minimized. It should be noted, however, that we do not have to employ such
an arbitrary criterion because we only have to determine the hyperparameters by the maximum
likelihood method and compare the candidate model by AIC statistic.

3.1 Driving Noise of Seasonal Summation
Let s be the number of seasons observed in a period. For economic time series, the length of
a period is usually one year and the cases of s = 4 and 12 draw great deal of attention. Now,
define the seasonal summation operator S(L) by

S(L) = 1+L+ · · ·+Ls−1. (10)
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Then a concise expression S(L)γt = ωt can be given to (4). This model is often referred to
as ‘dummy seasonality’, see Harvey (1989). To avoid a possible confusion with deterministic
dummy seasonality, we call this model the stochastic dummy seasonality. The model (4) can be
regarded as a stochastic constraint on seasonal component such that the sum of s-consecutive
seasonal factors will follow zero mean independent random variable. Though the seasonal
component γt can vary as time evolves, the seasonal pattern cannot change very much if the
estimated dispersion parameter σ̂ 2

ω is very small. As is already defined in section 2.1, the second
order difference equation (5) plus (10) will be referred to as the BSM in the data analysis section
4.

There have been several researches to allow more flexibility for the seasonal component.
One idea is to employ trigonometric seasonal specification, see Hannan, Terrell and Tuckwell
(1970) and Harvey (1989, p.41–42). But a scepticism may be cast on this model that a more em-
phasis is put on the evolution of separate seasons than on the serial association of consecutive
seasons. Another obvious drawback is that this approach requires many additional hyperpa-
rameters while we cannot always expect the gain in fitting accuracy. In such a case, though it
depends on the situation, the number of hyperparameters may be reduced by the equality/zero
constraints on some of the dispersions of seasonal components.

Kitagawa and Gersch (1984, p.386) introduce a higher order seasonal polynomial such
that S2(L)γt = ωt . This type of modeling can cope with gradual change in seasonal pattern
while its difficulty is that the state dimension of the model becomes larger. This extension
has been already implemented in the software DECOMP in TIMSAC-84, and is also available
on Web-Decomp. (As regards Web-Decomp, see Sato (1997) and the web site he maintains;
http://www.ism.ac.jp/~sato/or http://ssnt.ism.ac.jp/inets2/title.html)

Seasonal model (4) can be viewed as the seasonal summation is driven by a white noise
process. One idea to bring more variability to the stochastic dummy seasonality is to replace
the white noise by the ‘colored’ (i.e., autocorrelated) noise,

(1−ΦL)S(L)γt = ωt . (11)

Provided that the variance σ 2
ω is the same, the unconditional variance of the seasonal summa-

tion, σ 2
ω/(1−Φ)2 is greater than σ 2

ω as long as Φ < 1. Ozaki and Thomson (1992) call (11) the
pink-noise driven seasonal component model because the innovation process ωt/(1−ΦL) has
much power at lower frequencies that reminds us of the infrared ray. Throughout this article,
the second order stochastic trend (5) plus (11) will be referred to as the BSM-AR.

3.2 Seasonal Summation Driven by MA
To increase the seasonal summation variability, it appears more direct to introduce a finite order
MA process on the right hand side of (10). Let Θ(L) denote a certain form of polynomial of
the backward shift operator L, then the seasonal component model can be written as S(L)γt =
Θ(L)ωt . What we concern about is not a formal extension of models but a practical guideline
to specify Θ(L).

A motivation for MA-driven seasonal model is found, for example, in the past effort to build
a time series model which is expected to play the same role as a conventional seasonal adjust-
ment procedure. From 1970’s to early 80’s, many researchers sought unobserved components
models that approximate Census X-11 seasonal adjustment procedure. See Cleveland and Tiao
(1976), Wallis (1982), Burridge and Wallis (1984), for example. Some authors proposed de-
composition methods based on seasonal ARIMA model, Burman (1980) and Hillmer and Tiao
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(1982) to name a few. As Burridge and Wallis (1984) pointed out, models with a predominantly
autoregressive specification generate long signal-extraction filters that are not able to approx-
imate the relatively rapid decline of the X-11 filter coefficients. Because the seasonal model
in the BSM involves only AR polynomial in (10), the corresponding filter coefficients are not
ignorable even in the remote lags. In this context, there is a clear preference for moving average
dominated specifications in modeling seasonality. In general, many articles in this period rec-
ommend the inclusion of a seasonal moving average model. For example, Burridge and Wallis
(1984) proposed the following component model (for monthly economic time series) which will
correspond to the symmetric filter in Census X-11 procedure,

S(L)γt = (1+0.71L12 +1.00L24)ωt .

Another motivation emanates from accumulated experiences on seasonal ARIMA model
fitting to seasonal time series. Since Box and Jenkins (1976), there have been many empirical
works to show that ARIMA(0,1,1)×(0,1,1)s accounts for a wide variety of economic time series
with seasonality. This econometric folklore tells us that, for a detrended series ȳt ,

(1−Ls)ȳt = (1−ΘLs)εt , |Θ| < 1 (12)

fits reasonably. Seasonal differencing operator 1− Ls = (1− L)(1 + L + · · ·+ Ls−1) involves
the usual differencing operator 1− L. To avoid common factor between trend and seasonal
component model, only the summation type operator is considered when modeling seasonality
in a structural time series model. Hence the equation (12) suggests the following seasonal
component model,

S(L)γt = (1+ΘL+Θ2L2 + · · ·+Θs−1Ls−1)ωt . (13)

where |Θ| < 1. Provided that the variance σ 2
ω is the same, the unconditional variance of the

seasonal summation, (1+Θ+Θ2 + · · ·+Θs−1)σ 2
ω is greater than σ 2

ω unless Θ = 0. Throughout
this article, the second order stochastic trend (5) plus (13) will be referred to as the BSM-MA.
Originally, the words BSM, BSM-AR and BSM-MA refer to a set of equations. From now,
these words will be used as if they point only to the seasonal component models in some cases
, but this will not invite misunderstanding.

In stead of (13), we could start with a more general model such as

S(L)γt = (1+θ1L+θ2L2 + · · ·+θs−1Ls−1)ωt . (14)

There are a couple of reasons why we do not employ this general form. Firstly, (14) is exhaustive
in the number of parameters. Second, even if we employ the ‘general-to-specific’ modeling
strategy, there is another parametrization to take over (14) that gives us a more intuitively natural
interpretation of the parameters, and that shows a more reasonable way to put restrictions on
the parameters. Finally, such a specification enables us to understand the offset effect of the
BSM-MA, which will be clarified in the next subsection.

3.3 Pseudo-Spectrum Offset around Seasonal Frequencies
In this subsection, we shed another light on the role of MA term in seasonal component model.
It is known that the simultaneous use of AR and MA operators can mimic a ‘line spectrum’
when the zeros of both operators have a common argument. Whether it gives rise to a peak
or a trough depends on the magnitude relation of the modulus of roots. If the modulus of AR
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Figure 1: Log-spectrum shape of ARMA(2,2) processes.

roots are greater/smaller than those of MA roots, then the spectrum has peaks/troughs. Let us
consider the power spectrum f (λ ) (0 ≤ λ ≤ π) of ARMA(2,2) process given by

f (λ ) ∝

∣∣∣∣∣1−
2

∑
j=1

Θ je−2πi jλ

∣∣∣∣∣
2

/

∣∣∣∣∣1−
2

∑
j=1

Φ je−2πi jλ

∣∣∣∣∣
2

,

where Φ1 and Φ2 are fixed to 0.99
√

2 and −(0.99)2 respectively, and Θ1 = Θ
√

2 and Θ2 =
−Θ2 vary dependent on the parameter Θ. Because we only consider |Θ| < 1 cases, the power
spectrum f (λ ) has its peak at λ ∗ = 0.083.

Four panels in Figure 1 shows how the shape of log f (λ ) changes as Θ tend to unity. The
left-upper panel (Θ = 0) corresponds to the BSM, in which case the power spectrum is widely
spread around λ ∗ = 0.083. It is easily seen that the peak becomes sharper and more concentrated
around λ as Θ tends to unity. In addition to that, the level of power spectrum except for the peak
frequency gets flatter as Θ → 1. In other words, simultaneous use of AR and MA polynomials
with common argument offsets the power spectrum at all frequencies but the common argument
(in this example λ ∗=0.083). As a result, the shape of log-power spectrum closely resembles that
of a line spectrum apart from constant.

If we turn to the seasonal component models (4), (11) and (13), the power spectrum cannot
be defined any more because the process is not stationary due to the unit roots contained in
S(L) = 0. Even for such a case, a formally defined spectrum called pseudo-spectrum is often
considered to characterize a time series. See Harvey (1989, p.64). As an example, the log of
pseudo-spectra of seasonal components for both BSM and BSM-MA with Θ = 0.9 are drawn
in the left panel of Figure 2. For simplicity, we assign the same value to σ 2

ω in both models, and
the root of AR polynomial is slightly pitched outside the unit circle just for drawing this figure.
(Theoretically, two peaks at λ = 0.25,0.5 should be infinite.) We observe that the seasonal
component of the BSM accounts for not only the power at seasonal frequencies but also the
substantial portion of the power at the neighboring frequencies. Considering the offset effect
mentioned above, there is a possibility that BSM-MA may prevent the BSM from excessively
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Figure 2: Left: Log of pseudo-spectra of the BSM and BSM-MA (with Θ = 0.9), Right: Esti-
mated pseudo-spectra of seasonal component for private sector consumption in Japan (PCSMP).

removing the frequency components neighboring the seasonal frequencies. In addition, the
seasonal component of BSM-MA with Θ = 0.9 has more power at lower frequencies than the
BSM, which is also due to the offset effect. Meanwhile, the stochastic dummy model loses its
power at lower frequencies and enhances the power at higher frequencies.

In terms of the smoother mean, however, the most crucial factor is the level of the power
spectrum, σ 2

ω . Technically, σ 2
ω ≈ 0 is also required for f (λ ) to be close to a line spectrum. So

it is legitimate to say that the simultaneous use of AR and MA terms with a common argument
will produce an almost deterministic periodicity contaminated with a white noise of which level
completely depends on the time series in question. If Θ → 1 and σ 2

ω → 0 simultaneously, the
estimated seasonal factor should be almost deterministic. This is the case of ‘cancellation’, see
Box and Jenkins (1976, pp. 248). Then, removing the seasonality in advance by determinis-
tic dummy variables would be appropriate. If Θ → 1 but σ 2

ω >> 0, then the seasonal factor
will be interpreted as the deterministic dummy variables on which a white noise process is su-
perimposed. The right panel of Figure 2 shows the log of the estimated power spectra of the
seasonal components of BSM, BSM-AR and BSM-MA for Japanese private sector total con-
sumption. As is common with many series analyzed in the section 4, the power level of the
seasonal component is much increased and flattened by employing BSM-MA.

ARMA modeling with common argument and different modulus can be introduced to all the
seasonal frequencies of the stochastic dummy model. Let us denote the fundamental seasonal
frequency and its harmonics by λ j = 2π j/s for j = 1, . . . , [s/2] where

[s/2] =
{

s/2 for s even
(s−1)/2 for s odd

The seasonal summation operator can be written as the product of the full complement of
trigonometric operators, i.e.,

S(L) =
[s/2]

∏
j=1

γ j(L)

where
γ j(L) = 1− (2cosλ j)L+L2, j = 1, . . . , [s/2]

when s is odd. When s is even, γ j(L) is defined as above for j = 1, . . . ,s/2−1, while for j = s/2
it is

γs/2(L) = 1+L.

For monthly data the seasonal summation operator can be factorized into the six trigonometric
operators, see Harvey (1989, p.22) for example. Let us take a look at one of the trigonometric
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AR polynomials, 1−√
3L + L2, which corresponds to 12 months period. Hence introducing

MA term polynomial 1−√
3Θ1L +Θ2

1L2 with −1 < Θ1 < 1 leads to a sharp peak at ‘once-in-
a-year’ frequency, λ1 = π/6. Allowing MA term at all the seasonal frequencies, the stochastic
dummy seasonal component model can be extended to take the following form,

S(L)γt = (1−
√

3Θ1L+Θ2
1L2)(1−Θ2L+Θ2

2L2)(1+Θ2
3L2)

× (1+Θ4L+Θ2
4L2)(1+

√
3Θ5L+Θ2

5L2)(1+Θ6L)ωt

where the |Θ j|’s are all expected to be less than unity. If the six parameters Θ1, . . . ,Θ6 are
estimated freely, it means that peak properties can differ by the seasonal frequencies. But it
may cause too much flexibility to obtain a slight gain in accounting for the process variation.
Thus in this article we assume Θ1 = · · · = Θ6 = Θ which reduces to BSM-MA, (13). This
equality constraint can be rephrased that the offset effect is expected all alike for the seasonal
frequencies, and the roots of the MA polynomial are pitched outside the unit circle at an equal
distance.

3.4 State Space Representation for BSM-MA
We close this section with a remark on a state space representation of BSM-MA model. For the
BSM, the state vector (6) consists of the unobserved components and their lagged variables. As
regards the transition matrix for the seasonal component (the T 2 block of matrix T in (7)), the
first row essentially corresponds to the seasonal component model and other rows merely shift
the time index. The same holds for BSM-AR, too. However, such a simple construction cannot
be extended straightforward if the moving average terms are incorporated in the model.

A state space representation for (13) will be given as follows. Let γ̃t+i|t−1 be a predictor of
γt+i based on the observation up to time t −1, and on the innovations up to t, namely,

γ̃t+i|t−1 = −
s−1

∑
j=i+1

γt+i− j −
s−1

∑
j=i

Θ jωt+i− j.

It can be readily verified that the following recursive relationship holds,

γt = γt−1 + γ̃t|t−2 +ωt (15)

γ̃t+i|t−1 = −γt−1 + γ̃t+i|t−2 −Θiωt , i = 1, . . . ,s−1. (16)

Let us define the state vector as

αt = (γt, γ̃t+1|t−1, . . . , γ̃t+s−1|t−1)
′

where s denotes the number of seasons in a period. Then a set of s-equations given by (15) and
(16) constitute a state space representation together with the state αt , and the submatrices T 2
and R2 in (7) should be replaced by the followings,

T̃ 2 =

⎡
⎢⎢⎢⎢⎢⎣

−1 1
−1 1

... . . .
−1 1
0 0

⎤
⎥⎥⎥⎥⎥⎦ , R̃2 =

⎡
⎢⎢⎢⎢⎢⎣

1
−Θ
−Θ2

...
−Θs−1

⎤
⎥⎥⎥⎥⎥⎦ .

Note that the dimension of the state for the usual stochastic dummy seasonal model (4) and the
seasonal summation driven by AR (11) is s−1 while it increases just by one for the model (13).
This predictor-based state space representation will be attributed to Akaike (1974).
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4 Real Data Analysis
In this section, we analyze 11 time series with trend and seasonality. First 6 series are Japanese
economic time series; consumption in private sector (to be abbreviated to PCSMP, and its span
analyzed is from 1980Q1 to 2002Q4), machinery order (MORDER, 1987:04–2002:12), money
supply (M2CD, 1980:01–2002:12), new car registration (NEWCAR, 1980:01–2002:12), indus-
trial production (IIP, 1980:01–2002:12), and Tokyo district sales of department stores (TDS,
1980:01–2002:12). The remaining 5 series are taken from the textbook of Harvey (1989);
coal, gas and electricity demand of other final users (UKCOAL, UKGAS, UKELEC, 1960Q1–
1986Q4), car drivers killed or seriously injured (CDKSI, 1969:01–1982:12), and international
airline passengers (AIRLINE, 1949:01–1960:12) of which original source is Box and Jenkins
(1976). All the series are log-transformed. In the preliminary analysis, it is verified that AIC
statistic corrected by the determinant of Jacobian matrix supports the log-transformation for
each series. Because of the log transformation, the scale of the original series sticks around
from 5 to 15. Hence, as for the initialization of the Kalman filter, we assume the diagonal ma-
trix for P0 of which elements are all set to 104 in all the models. The first element of the initial
state mean is replaced by the sample mean which is computed using the first quarter of the time
series. The rest of the initial state element are assumed to be 0.

4.1 Preprocessing
As regards PCSMP and TDS, the effects of the introduction of consumption tax (1989:04)
and its rise (1997:04) are removed prior to the model comparison. The unusual increase in
March is the consequence of spending rush ahead of the consumption tax introduction or its
hike while the atypical depress in April is the counteraction to the March’s rush. From the vi-
sual inspection of seasonal factors obtained from the BSM, there seems to exist two outliers for
PCSMP (1997Q1, 1997Q2) and four outliers for TDS (1989:03, 1989:04, 1997:03, 1997:04).
Just for confirmation, each series was analyzed by Web-decomp with the level-2 outlier detec-
tion option. Though only 1997Q2 of PCSMP is judged to be outlier-free, we treat the all six
observations as outliers.

After the locations of outlier are identified, the preadjustment will be performed in the fol-
lowing manner. Firstly, we create the season-wise series from the original time series. In other
words, the observations for specific season (for example, only Q1, only January, etc.) are col-
lected to form another time series. Secondly, for this season-wise series, the data judged as
outliers are treated as missing values. We fit first or second order trend model to the season-
wise series, and the obtained smoother mean for the missing values replace the outliers. A list
of corrections for original data follows. For PCSMP, 72000.8 → 68552.8 (1997Q1), 67146.6 →
68360.0 (1997Q2). As for TDS, 287.883 → 227.255 (1989:03), 175.539 → 203.041 (1989:04),
271.883 → 210.733 (1997:03) and 166.127 → 182.729 (1997:04).

4.2 Overview of Results
The estimation results are summarized in Table 1 and Table 2. The BSM-MA attains the mini-
mum AIC for all series but UKCOAL, and the improvements in AIC are sometimes substantial.
In every case, the estimated innovation variance of the seasonal component, σ 2

ω , is larger than
those estimated in the BSM and the BSM-MA. It can be interpreted that MA-driven seasonal

11



Table 1: Estimation results for Japanese macroeconomic data
PCSMP σ̂ 2

η σ̂ 2
ω σ̂ 2

ε Φ or Θ AIC
BSM 0.16×10−5 0.86×10−5 0.35×10−4 — −508.60
BSM-AR 0.16×10−5 0.53×10−5 0.39×10−4 0.83×10−2 −509.70
BSM-MA 0.15×10−5 0.68×10−4 0.31×10−6 0.84 −523.88
MORDER σ̂ 2

η σ̂ 2
ω σ̂ 2

ε Φ or Θ AIC
BSM 0.31×10−4 0.28×10−2 0.29×10−5 — −306.73
BSM-AR 0.30×10−4 0.28×10−2 0.29×10−5 0.63×10−2 −303.16
BSM-MA 0.20×10−4 0.40×10−2 0.31×10−5 0.89 −329.02
M2CD σ̂ 2

η σ̂ 2
ω σ̂ 2

ε Φ or Θ AIC
BSM 0.24×10−5 0.88×10−6 0.10×10−5 — −2144.16
BSM-AR 0.24×10−5 0.85×10−6 0.99×10−6 0.18×10−1 −2154.06
BSM-MA 0.14×10−5 0.28×10−5 0.85×10−6 0.85 −2166.41
NEWCAR σ̂ 2

η σ̂ 2
ω σ̂ 2

ε Φ or Θ AIC
BSM 0.44×10−5 0.31×10−3 0.87×10−3 — −706.40
BSM-AR 0.44×10−5 0.31×10−3 0.87×10−3 0.23×10−6 −702.40
BSM-MA 0.40×10−5 0.16×10−2 0.26×10−5 0.92 −802.69
IIP σ̂ 2

η σ̂ 2
ω σ̂ 2

ε Φ or Θ AIC
BSM 0.12×10−4 0.85×10−4 0.12×10−6 — −1324.49
BSM-AR 0.12×10−4 0.86×10−4 0.12×10−6 0.36×10−2 −1320.90
BSM-MA 0.90×10−5 0.11×10−3 0.11×10−6 0.28 −1325.01
TDS σ̂ 2

η σ̂ 2
ω σ̂ 2

ε Φ or Θ AIC
BSM 0.14×10−5 0.11×10−3 0.14×10−3 — −1113.81
BSM-AR 0.14×10−5 0.86×10−4 0.15×10−3 0.66×10−2 −1126.18
BSM-MA 0.12×10−5 0.38×10−3 0.44×10−5 0.89 −1168.32

summation has successfully brought more flexibility than the BSM and the BSM-AR. More-
over, the BSM-MA is also supported from a predictive point of view, i.e., in terms of minimum
AIC.

The estimated AR paremeters of BSM-AR, Φ̂’s, are generally small. At least within the
worked examples in this paper, they rarely exceed 0.01. This even helps to increase the power of
the seasonal component. A typical result of BSM-AR is seen in the case of PCSMP for example.
In the right panel of Figure 2, the log-spectrum of BSM-AR is drawn slightly above the BSM,
and the estimated seasonal innovation variance increased from 0.53×10−5 to 0.86×10−5. As
a result, the plots of their smoother mean are almost indistinguishable from each other. Ozaki
(1997) also reports similar results on BSM-AR which he refers to ‘dynamic BAYSEA’ model.

On the other hand, the estimated MA parameter Θ̂ for PCSMP is 0.84, and the estimated
seasonal innovation variance is 0.68× 10−4. Accordingly, the level of log-power spectrum in
the right panel of Figure 2 is flattened and pushed upward in comparison with those of the BSM
and the BSM-AR.

Two panels in the bottom of Figure 3 show the seasonal components estimated by the BSM
and the BSM-MA, and the right-upper panel shows their difference. Four panels in Figure 4
show the annual plot of every quarter. We observe that these annual plots of BSM-MA swings
around those of the BSM and BSM-AR. Figure 4 clearly exhibits the difference between the
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Table 2: Estimation results for UK data in Harvey (1989)
UKCOAL σ̂ 2

η σ̂ 2
ω σ̂ 2

ε Φ or Θ AIC
BSM 0.72×10−5 0.67×10−9 0.17×10−1 — −35.81
BSM-AR 0.72×10−5 0.33×10−7 0.17×10−1 0.57×10−7 −31.81
BSM-MA 0.74×10−5 0.73×10−4 0.17×10−1 0.98 −31.83
UKGAS σ̂ 2

η σ̂ 2
ω σ̂ 2

ε Φ or Θ AIC
BSM 0.84×10−5 0.41×10−2 0.95×10−3 — −134.07
BSM-AR 0.85×10−5 0.41×10−2 0.92×10−3 0.17×10−2 −130.11
BSM-MA 0.64×10−5 0.75×10−2 0.20×10−5 0.64 −157.36
UKELEC σ̂ 2

η σ̂ 2
ω σ̂ 2

ε Φ or Θ AIC
BSM 0.88×10−5 0.48×10−3 0.12×10−2 — −235.75
BSM-AR 0.89×10−5 0.49×10−3 0.12×10−2 0.43×10−2 −232.21
BSM-MA 0.85×10−5 0.24×10−2 0.73×10−5 0.78 −258.52
CDKSI σ̂ 2

η σ̂ 2
ω σ̂ 2

ε Φ or Θ AIC
BSM 0.22×10−5 0.24×10−8 0.44×10−2 — −213.44
BSM-AR 0.19×10−5 0.11×10−3 0.41×10−2 0.21×10−8 −204.67
BSM-MA 0.21×10−5 0.48×10−2 0.12×10−5 0.99 −302.70
AIRLINE σ̂ 2

η σ̂ 2
ω σ̂ 2

ε Φ or Θ AIC
BSM 0.29×10−3 0.28×10−3 0.14×10−5 — −391.64
BSM-AR 0.20×10−3 0.29×10−3 0.32×10−3 0.15×10−1 −348.26
BSM-MA 0.88×10−5 0.94×10−3 0.13×10−5 0.94 −445.99

seasonal component of the BSM (thin solid line with symbol +) and of BSM-MA (thick solid
line). The BSM and BSM-AR (thin solid line without symbol in Figure 4) produce quite similar
results in both figures. Other successful cases exhibit the similar features, but the graphs are
omitted for the reason of space.

4.3 Noteworthy Exceptions
Table 1 and 2 show that for most of time series considered here the seasonal summation driven
by MA model improves the simple modeling by the BSM, except UKCOAL. What is striking
is the decrease in the AIC statistic in the case of CDKSI. From Table 2, AIC of BSM-MA,
−302.70 is much smaller than that of the BSM, −213.44. In terms of information criterion,
BSM-MA is overwhelmingly superior to the BSM. Nonetheless, once we give a glance at over
the right-lower panel of Figure 6, a doubt comes up if we should accept the difference of AIC
at its face value. To put it plainly, the seasonal component of BSM-MA appears to be just
the subtraction of trend component from the original series. On the other hand, considering
the unstable seasonality in the original time series, the seasonal pattern estimated by the BSM
looks too regular to be plausible. When it comes to seasonal adjustment, neither the BSM nor
BSM-MA gives a satisfactory solution.

Let st and s̄t be the seasonal component derived from the BSM and the BSM-MA respec-

tively. Then σ∗ =
√

T−1 ∑T
t=1(st − s̄t)2 is the standard deviation of the perturbation introduced

by MA term. The key feature of the CDKSI case is that σ∗ is very large in comparison with the
maximum amplitude of the seasonal pattern of the BSM, namely max st −minst .
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Figure 3: Original plus trend (upper-left), seasonal factors (bottom) and the difference of two
seasonal factors (upper-right) for PCSMP.
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Figure 4: Annual plot of every quarters of the estimated seasonal components in the PCSMP
case.
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Figure 5: Original plus trend (upper-left), seasonal factors and the difference of two seasonal
factors (upper-right) for UKCOAL.

Turning to the case of UKCOAL, we know from Table 2 that the BSM is better than the
BSM-MA by the minimum AIC criterion. Figure 5 show the results of the UKCOAL case. The
lower two panels exhibit that the seasonal components are indistinguishable from one another
, and almost deterministic whichever model to be employed as the seasonal component. The
difference of seasonal factors of the BSM and the BSM-MA (the right-upper panel of Figure
5) manifests that the BSM-MA could not introduce any additional variability into the seasonal
component. To conclude, the key feature of the UKCOAL case is, σ∗ is too small relative to
maxst −minst .

Another significant feature shared by both CDKSI and UKCOAL cases is that the estimated
seasonal MA parameter, Θ̂, is extremely close to 1. But from the right-lower panel of Figure 6,
we cannot say this is the case of polynomial cancellation because the estimated seasonal pattern
is far from deterministic. Looking at Figure 6, an idea easily comes up with us that the wild
seasonal component may be regarded as the nearly periodic seasonal pattern laid over the zero
mean stationary process. As for UKCOAL, the estimated seasonal patterns are nearly determin-
istic nevertheless the original series does not exhibit such a steady seasonality. Hence in any
case, it is suspected that some important component may be lacking in the model specification.

4.4 Including a Cyclical Component
Upon the observations in the previous subsection, we add a cyclical component to the BSM-MA
model and see its impact on the AIC values, on the seasonal moving average parameter (Θ) and
on the seasonal pattern. We assume that the cyclical component can be expressed by a finite
order (up to 4-th order here) stationary autoregressive process,

ψt =
m

∑
i= j

ρ jψt− j +κt ,
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Figure 6: Original plus trend (upper-left), seasonal factors and the difference of two seasonal
factors (upper-right) for CDKSI.

and that the time series can be decomposed as

yt = μt + γt +ψt + εt .

As the state space representation for this decomposition is obvious, the reader is invited to visit
the textbook like Harvey (1989), Kitagawa and Gersch (1996).

For UKCOAL, it turned out that the BSM-MA with the first order stationary AR component
attains the minimum AIC, −62.68. This is much smaller than the AIC value for the BSM-MA,
−31.83. The estimated trend, seasonal and cyclical component are plotted in the left column
of Figure 7. The seasonal MA parameter Θ̂ is 0.99, which is extremely close to unity. As we
recall, however, the BSM attained the minimum AIC at least in the analysis without a cyclical
component, so we had better compare the BSM and the BSM with a cyclical component model.
The AIC of the latter is −66.68 which is also much smaller than the AIC of the BSM, −35.81.
To conclude, the best model for UKCOAL is the BSM with a cyclical component expressed by
AR(1). If we fit the MA driven seasonal model (13), the estimated Θ̂ is close to 1. This suggests
the seasonality in UKCOAL is almost deterministic, and the simple seasonal summation (4)
with very small σ 2

ω suffices.
Now we turn to the CDKSI case. After the model estimation and selection, we find including

a second order statinary AR to the BSM-MA improves the AIC value, −302.70 → −304.46.
The seasonal MA parameter for CDKSI is substantially diminished from 0.99 to 0.28. We doubt
if the MA parameter is really needed, hence we fit the BSM including a AR(2) component.
Contrary to our expectation, the AIC statistic of the model is −269.39, which is inferior to the
BSM-MA with a cyclical component. Thus, the best model among the models we tried here is
the BSM-MA with a cyclical component model expressed by a statinary AR of order 2. Three
panels in the right column of Figure 7 show the estimated components for CDKSI. Paralleling
the AR component with the difference of seasonal components in Figure 6, the fluctuations
brought by the MA process are almost captured by the cyclical component.
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Figure 7: Original plus trend (upper), seasonal (middle) and AR component (bottom) for UK-
COAL (left panels) and CDKSI (right panels).

4.5 A Graphical Representation
In the subsection 4.3, it is remarked that the appropriateness of the flexibility brought by MA
term should be determined in connection with the range of seasonal pattern of the time series.
Thus we introduce a simple measure on the pertinence of the seasonal component model, and
propose a graphical representation. Let R = maxst −minst . What appears to be essential is the
ratio, R/σ∗. Considering that R is a sort of range and σ∗ is the standard deviation. It seems
more natural to consider the length of interval, such as ±2σ∗ or ±3σ∗ for example. Here we
adopt ±3σ∗ interval, and define the following quantity to measure the impact of the fluctuation
brought by MA term on the seasonal pattern,

M = log10{R/6σ∗}.
If s̄t is very wild, then the argument of the log function will be close to unity, so M is close to
0. If st and s̄t are alike, then small value of σ∗ will lead to large M. (If σ∗ happens to be zero,
then we discard the measure M. Such a case does not interest us at all because the MA term is
not effectively working and the BSM is obviously better. ) As is already pointed out in section
4.3, another key quantity is Θ̂, the estimated MA parameter. Therefore, the 2-dimensional plot
of (M, Θ̂) is expected to give some information on the modeling of the time series of interest.

Figure 8 shows the graphical layout of the BSM-MA models applied to the 11 time series
in this paper. The horizontal axis denotes the measure M defined above, and the vertical axis
indicates the seasonal MA parameter, Θ. Two points connected with an arrow mean that the
AIC statistic is improved by including a cyclical component, and subsequently the graphical
layout of (M,Θ) is changed. It is striking that Θ̂’s are diminished and M’s are centered around
1.00±0.25 after the cyclical component is added to the model.

We observe that the two exceptional cases (CDKSI and UKCOAL) are located at the upper-
left and the upper-right in this model map. M ≈ 0 means the seasonal variability increased
by the BSM-MA model is almost comparable with the seasonal range of original time series.
On the other hand, large M indicates that the BSM-MA cannot introduce any flexible seasonal
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Figure 8: Graphical layout of the estimated models.

pattern compared to the BSM. In some cases this suggests that the seasonality for the time
series of interest is almost deterministic, which sounds reasonable for the UKCOAL case. From
our empirical analysis, it is inferred that Θ̂ ≈ 1 suggests the ‘cancellation’ is occurring on the
seasonal component model (e.g. UKCOAL), or the possible misspecification as in the CDKSI
case.

5 Conclusion
This article proposed a parsimonious modeling of flexible seasonality within a framework of
structural time series models. The basic idea is to drive the seasonal summation by a moving
average process with just one parameter, which has been referred to the BSM-MA throughout
this article. A state space representation for the model is also given. Compared to the simple
seasonal summation (BSM) and the AR-driven seasonal summation (BSM-AR), the BSM-MA
attains the minimum AIC in 10 out of 11 cases. In all successful cases, the estimated seasonal
innovation variance is larger than those estimated by the BSM and BSM-AR, which leads to
the increase of the power spectrum of the seasonal component. Annual plot of every quarters or
months reveals the wiggly movement introduced by moving average terms. A close examination
of the UKCOAL and CDKSI cases provides us some information. Adequacy of the additional
seasonal perturbation brought by the BSM-MA depends on how big it is relative to the range of
seasonal pattern. Hence the log of the ratio of the maximum amplitude of seasonal pattern to the
interval length of the ±3-standard deviations obtained by the seasonal difference between the
BSM and the BSM-MA is introduced as a measure, M. Both too small and too large M suggests
the possible misspecification. Using M and Θ, a graphical representation for the estimated
models is also proposed, which serves to mark out the seemingly unsuccessful cases. Even for
such cases, the decomposition including a cyclical component is proved to amend the existing
models from as is shown in our empirical analysis.

18



Acknowledgement
This work was carried out partly under Grant-in-Aid for Young Scientists (B) (No. 14780177)
sponsored by the Ministry of Education, Culture, Sports, Science and Technology, and also
under Grant-in-Aid for Scientific Research (C) (No. 17500189) sponsored by Japan Society for
the Promotion of Science.

References
[1] Akaike, H. (1973). Information theory and extension of the maximum likelihood principle.

In Second International Symposium of Information Theory, N. B. Petrov and F. Czaki
(eds.), 267–281, Budapest: Akademiai Kiado.

[2] Akaike, H. (1974). Markovian representation of stochastic processes and its application to
the analysis of autoregressive moving average processes, Ann. Inst. Statist. Math., Vol. 26,
363–387.

[3] Akaike, H.(1980). Seasonal adjustment by a Bayesian modeling, J. Time Series Anal., Vol.
1, 1–13.

[4] Akaike, H., Ozaki, T., Ishiguro, M., Ogata, Y., Kitagawa, G., Tamura, Y.-H., Arahata, E.,
Katsura, K. and Tamura, Y. (1985). TIMSAC-84 Part 1, Computer Science Monographs
No. 23, The Institute of Statistical Mathematics, Tokyo.

[5] Anderson, B. D. O. and Moore, J. B. (1979). Optimal filtering, Prentice-Hall, New Jersey.

[6] Box, G. E. P., Hillmer, S. C. and Tiao, G. C. (1979). Analysis and modelling of seasonal
time series, NBER-Census Conference on Seasonal Analysis of Economic Time Series, ed.
Arnold Zellner, Washington D.C., 309–334.

[7] Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control,
Revised ed., Holden-Day.

[8] Burman, J. P. (1980). Seasonal adjustment by signal extraction, Journal of the Royal Sta-
tistical Society, Series A, Vol. 143, 321–327.

[9] Burridge, P. and Wallis, K. F. (1984). Unobserved-components models for seasonal ad-
justment filters, J. Bus. Econ. Stat., Vol. 2, 350–359.

[10] Cleveland, W. P. and Tiao, G. C. (1976). Decomposition of seasonal time series: a model
for the X-11 program, J. Amer. Stat. Assoc., Vol. 71, 581–587.

[11] Gersch, W. M. and Kitagawa, G. (1983). The prediction of time series with trends and
seasonalities, J. Bus. Econ. Stat., Vol. 1, 253–264.

[12] Hannan, E. J., Terrell, R. D. and Tuckwell, N. (1970). The seasonal adjustment of eco-
nomic time series, International Economic Review, Vol. 11, 24–52.

[13] Harrison, P. J. and Stevens, S. C. (1971). A Bayesian approach to short-term forecasting,
Operational Research Quarterly, Vol. 22, 341–362.

19



[14] Harvey, A. C. (1984). A unified view of statistical forecasting procedures (with discus-
sion), Journal of Forecasting, Vol. 3, 245–283.

[15] Harvey, A. C. (1985). Trend and cycles in macroeconomic time series, Journal of Business
and Economic Statistics, Vol. 3, 216–227.

[16] Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman filter,
Cambridge University Press, Victoria, Australia.

[17] Harvey, A. C. and Todd, P. H. J. (1983). Forecasting economic time series with structural
and Box-Jenkins models (with discussion), Journal of Business and Economic Statistics,
Vol. 1, 299–315.

[18] Hillmer S. C. and Tiao, G. C. (1982). An ARIMA-model-based approach to seasonal
adjustment, J. Amer. Stat. Assoc., Vol. 77, 63–70.

[19] Kitagawa, G. (1981). A nonstationary time series model and its fitting by a recursive filter,
J. Time Series Anal., Vol. 2, 103–116.

[20] Kitagawa, G. (1987). Non-Gaussian state space modeling of non stationary time series
(with discussion), J. Amer. Stat. Assoc., Vol. 82, 1032–1063.

[21] Kitagawa, G. (1989). Non-Gaussian seasonal adjustment, Computers & Mathematics with
Applications, Vol. 18, 503–514.

[22] Kitagawa, G. (1994). The two-filter formula for smoothing and an implementation of the
Gaussian sum smoother, Ann. Inst. Statist. Math., Vol. 46, 605–623.

[23] Kitagawa, G. (1996). Monte carlo filter and smoother for non-Gaussian nonlinear state
space models, Journal of Computational and Graphical Statistics, Vol. 5, 1–25.

[24] Kitagawa, G. and Gersch, W. M. (1984). A smoothness-prior state space modeling of time
series with trend and seasonality, J. Amer. Stat. Assoc., Vol. 79, 378–389.

[25] Kitagawa, G. and Gersch, W. M. (1996). Smoothness priors analysis of time series, Lecture
Notes in Statistics 116, Springer-Verlag, New York.

[26] Koopman, S. J., Harvey, A. C., Doornik, J. A. and Shephard, N. (2000). STAMP: structural
time series analyser, modeller and predictor, Timberlake Consultants Ltd, Harrow.

[27] Ozaki, T. (1997). Dynamic X11 model and nonlinear seasonal adjustment II: numerical
examples and discussion (in Japanese with English abstract), Proceedings of the Institute
of Statistical Mathematics, Vol. 45, No. 2, 287–300.

[28] Ozaki, T. and Thomson, P. J. (1992). A dynamical system approach to X-11 type sea-
sonal adjustment, Research Memorandum No. 498, the Institute of Statistical Mathemat-
ics, Tokyo.

[29] Sato, S. (1997). Introduction to “Web-Decomp" — Seasonal Adjustment
System on WWW — (in Japanese with English abstracts), Proceedings of
the Institute of Statistical Mathematics, Vol. 45, No. 2, 233–243. See also
http://ssnt.ism.ac.jp/inets2/title.html.

20



[30] Shephard, N. and Pitt, M. (1997). Likelihood analysis of non-Gaussian measurement time
series, Biometrika, Vol. 84, 653–667.

[31] Wallis, K. F. (1982). Seasonal adjustment and revision of current data: linear filters for the
X-11 method, Journal of the Royal Statistical Society, Series A, Vol. 145, 74–85.

[32] West, M. and Harrison, P. J. (1986). Monitoring and adaptation in Bayesian forecasting
models, J. Amer. Stat. Assoc., Vol. 81, 741–750.

[33] West, M., Harrison, P. J. and Migon, H. S. (1985). Dynamic generalized linear models and
Bayesian forecasting (with discussion), J. Amer. Stat. Assoc., Vol. 80, 73–97.

21


	A structural time series model facilitating flexible seasonality
	1 Introduction
	2 Modeling Trend-Seasonality
	2.1 Basic Structural Model
	2.2 State Space Form
	2.3 Model and State Estimation

	3 ParsimoniousModeling toward Flexible Seasonality
	3.1 Driving Noise of Seasonal Summation
	3.2 Seasonal Summation Driven by MA
	3.3 Pseudo-Spectrum Offset around Seasonal Frequencies
	3.4 State Space Representation for BSM-MA

	4 Real Data Analysis
	4.1 Preprocessing
	4.2 Overview of Results
	4.3 Noteworthy Exceptions
	4.4 Including a Cyclical Component
	4.5 A Graphical Representation

	5 Conclusion
	References




