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ABSTRACT 

 

This paper examines the distributions of (zero frequency) unit root test statistics for I(1) 

processes in the presence of noninvertible moving average components. The analysis 

initially considers a noninvertible MA(1), for which the asymptotic distribution of the ADF 

test statistic under the unit root null hypothesis is shown to depend on the order of 

augmentation and can be shifted to either the right or the left, so that undersizing or 

oversizing problems may result. Although the distribution of the PP statistic depends on both 

the order of autocorrelation allowed and the weighting function used, it is always undersized 

with the Bartlett window. When extended to noninvertibility arising from X-11 seasonal 

adjustment of a random walk, the analytical features of the asymptotic distributions of these 

tests show corresponding characteristics as for the MA(1) case. These results are supported 

by a Monte Carlo analysis of the large sample distributions, and finite sample size properties 

of these unit root tests are also examined for a range of seasonal and nonseasonal I(1) 

processes.  
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1. Introduction 

The implications of seasonal adjustment have been studied by many authors since the 

pioneering works of Wallis (1974) and Sims (1974). Recent analyses include del Barrio 

Castro and Osborn (2004), Ericsson, Hendry and Tran (1994), Franses (1995, 1996), Ghysels 

(1990), Ghysels and Perron (1993, 1996), Ghysels and Liebermann (1996), Matas-Mir and 

Osborn (2004) and Otero and Smith (2002). Although these studies establish nontrivial 

consequences for seasonal adjustment in terms of shortrun properties, the general conclusion 

with respect to longrun properties is reassuring, with seasonal adjustment found to have no 

asymptotic impact on tests under the null hypothesis of (zero frequency) integration and 

cointegration; see, in particular, Ghysels and Perron (1993) and Ericsson et al. (1994).  

These results are, however, open to question, since they rest on an invertibility 

assumption that is, in general, invalid for seasonally adjusted data. Indeed, the present paper 

shows that the existence of a noninvertible moving average unit root of -1 has nontrivial 

consequences for the asymptotic properties of zero frequency unit root tests. More 

specifically, depending on the order of augmentation adopted, the asymptotic distribution of 

the usual augmented Dickey-Fuller (Dickey and Fuller, 1979) [ADF] test statistic under the 

unit root null hypothesis can be shifted to either the right or the left, so that undersizing or 

oversizing may result. On the other hand, the Phillips-Perron (1988) [PP] statistic is 

undersized, irrespective of the order of autocorrelation allowed.  

Due to the properties of the filter embedded in X-11 and its more recent development 

X-12-ARIMA, seasonal adjustment by these procedures may be expected to give rise to 

noninvertible moving average terms in the adjusted data (Maravall, 1993). However, if the 

usual unit root tests do not satisfactorily deal with noninvertible moving average 

components, then inferences (even asymptotically) about the presence of unit roots can be 

unreliable for seasonally adjusted data. We illustrate these effects analytically and through 
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Monte Carlo simulation, for both the ADF and PP tests. The analysis we undertake is related 

to that of Galbraith and Zinde-Walsh (1999), who examine the impact of moving average 

components on ADF tests. However, in contrast to their assumption of invertibility, we focus 

on the noninvertible moving average case and, more specifically, on the effect of seasonal 

adjustment. Also, although Ghysels and Perron (1993) examine the impact of seasonal 

adjustment on unit root tests, they assume invertibility. 

The issue we study has not, to our knowledge, been considered in the literature. 

Maravall (1993) discusses the noninvertibility implication of seasonal adjustment, and hence 

recommends that unit root tests based on autoregressive augmentation should not be 

undertaken with seasonally adjusted data. However, he does not analyze the resulting 

asymptotic distributions. Although the Monte Carlo analyses of Ghysels (1990), Ghysels and 

Perron (1993) and Smith and Otero (2002) indicate size problems for univariate unit root or 

cointegration tests after seasonal adjustment, this is seen to be a finite sample issue. In 

contrast, we argue that the problem is more fundamental, since it affects the asymptotic 

distributions.  

The paper is organised as follows. Section 2 contains some general discussion of 

seasonal adjustment and unit roots. Section 3 then analytically examines the ADF and PP 

(zero frequency) unit root tests in the presence of a noninvertible (seasonal) moving average 

root of -1. Section 4 generalizes the discussion to the case of seasonal adjustment, and 

contains both analytical and Monte Carlo results. Section 5 concludes. 

 

 



 5

2. Seasonal adjustment and moving average components 

The regression  

yt = ρ yt-1 + ut        (1) 

is the basis of all (zero frequency) unit root tests, with the relevant null hypothesis ρ = 1 or, 

equivalently, α = ρ - 1 = 0. The disturbance innovations ut in (1) may exhibit temporal 

dependence and/or heteroskedasticity, with the limiting distribution of the normalized bias 

and t-ratio statistics for testing this null hypothesis given by Phillips (1987, Theorem 3.1). 

Our interest focuses on temporal dependence, with the typical assumption in unit root 

analyses (for example, Ghysels and Perron, 1993, Elliot, Rothenberg and Stock, 1996, 

Galbraith and Zinde-Walsh, 1999) being that the process for ut is stationary and invertible. 

 However, the invertibility of ut may be questioned when the series under analysis has 

been seasonally adjusted. Such procedures, including the widely-used X-11 or X-12 ARIMA 

program, typically assume the presence of nonstationary stochastic seasonality. More 

particularly, seasonal adjustment by X-11 can be represented as the application of a sequence 

of linear filters, with Laroque (1977) being the first to derive the implied filter coefficients in 

the quarterly case while Ghysels and Perron (1993) present the corresponding coefficients 

for monthly data. Although in many cases the use of X-11 has been replaced by X-12-

ARIMA, the core features of X-11 seasonal adjustment remain essentially unchanged in this 

procedure (see Findley et al., 1998).  

All filters routinely applied during the process of adjustment make implicit 

assumptions about the form of the process generating the unadjusted series. As shown by 

Burridge and Wallis (1984), the implied process for X-11 has one or two zero frequency unit 

roots and a full set of seasonal unit roots. These implied seasonal unit roots are a 
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consequence of the moving annual summation operator1 S(L) = 1 + L + … + Ls-1
, where s is 

the frequency of observations per year (typically s = 4 or 12) and L is the usual lag operator, 

which is embedded in X-11. In other words, for an unadjusted series, yt
u, conventional X-11 

seasonal adjustment assumes that the data generating process (DGP) is of the form 

    t
u
t

d wyLSL =− )()1(      (2) 

where d = 1 or 2 (with the best-fitting model implying d = 2) and wt is a moving average 

(MA) process (Burridge and Wallis, 1984). Approaches to seasonal adjustment based 

explicitly on unobserved components models also typically make this assumption; see, for 

example, Bell and Hillmer (1984) or Harvey (1989). 

 Despite the common use of seasonally adjusted data, empirical studies of the 

properties of seasonal time series find, in general, little evidence for the presence of the full 

set of seasonal unit roots implied by the autoregressive operator S(L) in (2); see, among 

others Beaulieu and Miron (1993), Osborn (1990), or the discussion in Ghysels and Osborn 

(2001, pp.90-91). In other words, while economic series are typically integrated (containing 

at least one zero frequency unit root), they are not seasonally integrated. Therefore, 

application of seasonal adjustment based on an assumption of a DGP of the form (2) when 

the true DGP has no seasonal unit roots will induce the full set of (seasonal) unit roots 

implied by S(L) in the MA component. Consequently, the stylized fact that macroeconomic 

time series are not seasonally integrated implies that the disturbance ut in the unit root test 

regression of (1), when yt is seasonally adjusted, may be anticipated to be a noninvertible 

moving average process2. 

As shown by Phillips (1987), the distribution of tests for ρ = 1 in (1) depends on 

unknown parameters related to the serial correlation of the innovations. The two widely used 

                                                 
1  Ghysels and Osborn (1991, pp.96-98) discuss the sequence of filters applied. The filter S(L) is applied in a 

centred form, so that its mid-point corresponds to a specific observation. 
2  Maravall (1993) discusses the noninvertibility implications of seasonal adjustment and trend estimation in 

the context of an unobserved components model. 
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approaches proposed to deal with this problem are those of Phillips (1987) and Phillips and 

Perron [PP] (1988), which relies on a nonparametric correction for serial correlation, and the 

approach due to Dickey and Fuller (1979) [DF], which deals with serial correlation by 

augmenting the test regression (1) with lagged differences of yt. 

The seminal study of Schwert (1989) showed that unit root tests of the DF form, with 

autoregressive augmentation, are poorly sized in the presence of moving average 

components in (1). The analyses of Galbraith and Zinde-Walsh (1999) and Gonzalo and 

Pitarakis (1998) show why such distortions occur. In particular, these studies establish the 

dependence of the size distortions on the order of augmentation adopted, so that such 

distortions exist even asymptotically. Due to the dependence on the augmentation, this result 

is compatible with the fact that, in the presence of an invertible MA component, a valid test 

can be obtained using only autoregressive (AR) augmentation provided this augmentation is 

sufficiently large (Said and Dickey, 1984).  

However, while Galbraith and Zinde-Walsh (1999) and Gonzalo and Pitarakis (1998) 

analytically examine the implications of MA components in (1), both assume these to be 

invertible. Nevertheless, Galbraith and Zinde-Walsh hint at the importance of this 

assumption, by noting that the size distortions in the DF test are particularly difficult to deal 

with in the presence of a near-noninvertible MA root.  

In contrast to the DF test, which relies on an AR approximation to a MA, the 

Phillips-Perron (1988) approach uses observed residuals from (1) to mimic the 

autocorrelation properties of ut, typically up to some maximum lag. Provided that the value 

employed for this maximum lag is at least as large as the order of the true MA, this approach 

is particularly attractive in the context of moving averages. However, practical applications 

of the PP test require the use of a weighting function to ensure nonnegativity of estimated 
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variances and, as discussed below, this weighting function is crucial in the context of a 

noninvertible MA. 

The present paper focuses on the unstudied issue of the impact of a noninvertible 

moving average component on the distributions of conventional unit root tests under the null 

hypothesis. This issue is important whether the ADF or PP test is applied, because of the 

impact of MA seasonal unit roots induced as an unrecognised side-effect of seasonal 

adjustment.  

 

 

3. Noninvertible moving averages  

For macroeconomic time series, intra-year observations are typically available at quarterly or 

monthly frequency (s = 4 or 12). In each case the operator S(L) of (2) contains the seasonal 

root -1 and in this section we focus our analysis on MA processes containing this root. 

Therefore, consider the process  

   yt = yt-1 + ut  t = 1, 2, …, T    (3) 

where ut = εt  + εt-1 and εt ~ iid(0, σ2). The moving average unit root of -1 in (3) implies a 

zero in the spectral density of ∆yt at a frequency of π (that is, at the frequency corresponding 

to cycles of length two periods). 

 Throughout our theoretical analysis, we assume zero starting values (y0 = ε0 = ε-1 = 0 

in (3)) and consider only test regressions without deterministic components. This is to keep 

the analysis as simple as possible in order to focus on the essential feature of our analysis, 

namely the consequences of noninvertible moving averages. Neither generalization to 

nonzero starting values or the introduction of deterministic components would alter the 

essential results. 
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3.1 No correction for autocorrelation 

Consider first a DF test regression applied to (3) without augmentation, namely 

   ∆yt = αyt-1 + ut,  t = 1, 2, …, T   (4) 

where, under the data generating process (DGP) α = 0 and ut = εt + εt-1. Application of OLS 

to (4) yields 

   .ˆ
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The asymptotic distributions of the normalized bias and t-ratio are given in the following 

Proposition. (See the Appendix for proofs of all Propositions.)  

 

Proposition 1. Let yt follow (3) with ut = εt + εt-1 and εt ~ iid(0, σ2). The asymptotic 

distribution of the normalized bias test statistic in (4) is then given by: 
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and that for the t-ratio test statistic is: 
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drrW
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Here, and throughout the paper, ⇒  means convergence in distribution and W(r) is standard 

Brownian motion. 

The implication is that when no allowance is made for the autocorrelation inherent in 

(3), the distribution of the normalized bias α̂T  in (5) is asymptotically shifted to the right by 

the amount 0.25/[∫W(r)2dr], compared with the case of uncorrelated innovations. Also if we 

compare (6) with the usual Dickey-Fuller distribution for the t-ratio, namely  
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the distribution in (6) is both shifted to the right through the addition of 0.5 to the numerator 

and is also increased by a factor of √2.  

 Consequently, the unit root hypothesis test is undersized (compared to the nominal 

test size), whether the normalized bias or the t-ratio form of the test is applied. As seen in 

Table 1 for the t-ratio, the undersizing is severe, with the null hypothesis being rejected only 

one tenth of the number of times indicated by a nominal size of 5 percent.  

It is unsurprising that the DF test is undersized when the process has a positive 

noninvertible MA(1) component. The next two subsections turn to the more interesting issue 

of the effectiveness of AR augmentation and the PP approach in correcting the size. 

 

3.2 Autoregressive augmentation 

Now consider the usual ADF regression 

   t

p

i
ititt vyyy +∆+=∆ ∑
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1
1 φα      (8) 

where the DGP is again given by (3) with ut = εt + εt-1. As discussed in detail in the 

Appendix, under the null hypothesis α = 0 the autoregressive augmentation of (8) results in 

vt following an MA(p+1) disturbance process, with coefficients 

   1....,,1,
1
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−= + pi
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iθ     (9) 

Notice that, as a consequence of the noninvertibility of the MA process, these coefficients do 

not decline towards zero as i increases. Indeed, as also shown in the Appendix, the AR 

approximation does not account for the noninvertible MA seasonal unit root unit root -1, 

since this root remains in the MA process with coefficients given in (9). 
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The consequences for the ADF test statistics are examined in Proposition 2, which 

provides the asymptotic distributions of the normalized bias and t-ratio tests for this case. 

 

Proposition 2. Let yt follow (3) with ut = εt  + εt-1 and εt ~ iid(0, σ2). The ADF normalized 

bias and t-ratio test statistic test statistics in regression (8) then satisfy: 
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As p increases, the distributions (10) and (11) approach the DF distributions for the 

normalized bias and t-ratio statistics, respectively. This result applies despite the MA unit 

root that remains in (8), and indicates that a sufficiently high order of augmentation renders 

the DF distribution appropriate even in the presence of a noninvertible MA.  

Nevertheless, for any finite and odd p, both distributions are shifted to the left, 

whereas they are shifted to the right for even p, compared with the DF distributions. There is 

also a scaling effect in both cases, and this is dependent on the order of augmentation. 
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Overall, we anticipate that the unit root test will be asymptotically oversized for p odd and 

undersized for p even.  

The quantiles of the empirical distribution corresponding to (11) are shown in Table 

1 for p = 0, 1, 2, 3, 4, 8, 12, 16, 20, 40, 100, 200 based 15,000 replications and sample size T 

= 4,000. The shift of the distribution to the left (right) for p odd (even) is evident, as is the 

consequent size problems (for nominal size 5 percent). While the distribution is approaching 

the DF distribution (shown in the top row) as p increases, nontrivial undersizing remains 

even when an augmentation of p = 24 is used, illustrating the inadequacy of even a high 

order autoregression to account for this first order noninvertible MA process. 

 

3.3 PP approach 

Phillips (1987) and Phillips-Perron (1988) propose correcting the normalized bias and t-ratio 

statistics to take account of serial correlation in (4) through the use of  
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in which p is the truncation parameter, tû  (t = 1, …, T) are the residuals from an ordinary 

least squares estimation of (4) and w(i, p) is a weighting (or kernel) function used to ensure 



 13

that the estimated longrun variance 2
ls  is nonnegative. Perhaps the most widely used 

weighting function in practice is the Bartlett window which has ( ) ( )]1/[1, +−= pipiw . 

 Proposition 3 obtains the asymptotic distributions for the PP statistics of (12) and 

(13) for the noninvertible MA(1) process of interest. 

 

Proposition 3. Let yt follow (3) with ut = εt  + εt-1 and εt ~ iid(0, σ2). Then  the asymptotic 

distributions of the PP unit root test statistics of (12) and (13) are given by: 
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The weighting w(1, p) applied to the first-order sample autocovariance in (14) enters 

the asymptotic distributions (15) and (16). Indeed, it is easy to see that the PP statistic 

distributions (15) and (16) are the usual asymptotic DF distributions only if w(1, p) = 1, 

which implies that no weighting is applied to this sample autocovariance.  However, the 

Bartlett window uses ( ) ( )1/,1 += pppw , and in this case the distributions tend to the 

corresponding DF ones as p → ∞. However, for finite p, the distributions are shifted to the 

right in relation to the DF case, with ( )α̂tZ  also being subject to a scaling factor that is 

greater than unity. Indeed, it is easy to see from (16) that, for given p, the Bartlett window 

yields the asymptotic distribution 
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Table 2 presents results for the distribution of ( )α̂tZ , analogous to those for the DF t-

statistic shown in Table 1. Although p plays a different role in these two approaches, we 

again use p = 1, 2, 3, 4, 8, 12, 16, 20, 40, 100, 200.  In contrast to the ADF statistic, the 

statistic of (17) is always undersized, except for the far left-hand tail with relatively large p. 

However, for a nominal 5 percent significance level, the test is reasonably well sized for p ≥ 

8, since this provides relatively high weight to the first-order sample autocovariance in 

relation to the required w(1, p) = 1.  

 

 

4.  Seasonally adjusted random walk  

We now turn to our case of principal interest, namely that of seasonal adjustment. To keep 

the analysis as simple as possible, while illustrating the implications of seasonal adjustment, 

assume that the true DGP for the unadjusted data series (yt
u) is the simple random walk 

  Ttyy t
u
t

u
t ...,,2,1,1 =+= − ε      (18) 

where (again for simplicity) εt = 0 for t ≤ 0. Indeed, the random walk is appropriate for 

analysis because it provides the only case of an I(1) process where all the autocorrelation 

characteristics are induced by the adjustment filter. Therefore, studying this process allows 

us to focus on the impact of the filter. 

We analyze the effect of X-11 seasonal adjustment using its default options, as 

widely used in practice. This adjustment can be approximated by a two sided symmetric 

linear filter3. Consequently, we write the process after adjustment (denoted yt
f) as 

                                                 
3  This applies to the central observations of the sample, where there are sufficient observations before and after 

the specific observation for the symmetric two-sided filter to be applied. Since we are concerned with the 
effects of the “typical” seasonal adjustment filter, we do not consider the effects of the asymmetric filters that 
are used in X-11 for observations at the beginning and end of the sample. 
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where the coefficients qi are known (see Laroque, 1977, Ghysels and Perron, 1993). It 

should be noted that the nonzero weights (or coefficients) extend over a relatively long time 

span; for example, in the quarterly case qi ≠ 0 for i = 0, 1, …, 27. Although the weights sum 

to unity, they are not all positive. 

As discussed in Section 2, the X-11 seasonal adjustment filter applied to (18) results 

in the presence of seasonal unit roots in the MA of (19). Clearly, therefore, the filtered 

process retains the autoregressive unit root of (18), but is distorted through the complicated 

and noninvertible moving average introduced in the disturbances ut. Using the Beveridge-

Nelson (1981) decomposition, the filtered series can be written (see the Appendix) as: 

   

 (20) 

 

 

when we assume that the two-sided symmetric filter is used for all observations4 t = 1, ..., T. 

Expression (20) is useful in allowing us to obtain the distributions of the unit root test 

statistics. 

 In addition to the analytical analysis of the effect of seasonal adjustment on a random 

walk process in subsections 4.1 to 4.3, subsection 4.4 presents the results from a finite 

sample Monte Carlo study for a wide range of I(1) processes. 

 

                                                 
4  This mimics the situation where a researcher uses a historical sample of seasonally adjusted observations. 

Due to the two-sided filter, this implicitly assumes that observations to t = T+k are available for yt.  
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4.1 No correction for autocorrelation 

The test regression for the DF test without augmentation applied to the filtered process (19) 

is 

t
f

t
f

t uyy +=∆ −1α .      (21) 

As shown in following proposition, the asymptotic distributions of the unit root test statistics 

depend on the filter coefficients qi of (19). 

 

Proposition 4. For an unadjusted series following the random walk process of (18), assume 

that the linear filter of (19) is applied. Then for test regression (21), the normalized bias has 

asymptotic distribution 
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while the asymptotic distribution for the t-ratio statistic is  
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As for the DF regression without augmentation analyzed in Section 3, the distribution 

of the normalized bias in (22) is shifted to the right compared with the usual DF one. The 

numerator shift term [1 - Σqj
2] is 0.174 and 0.214 for quarterly and monthly data, 

respectively. In the case of the distribution of the t-ratio, (23), when compared with the usual 

DF disribution of (7), both the numerator and denominator are affected by adjustment. The 

numerator shift is the same as in (22). The denominator scaling by the root of the sum of the 

squared filter weights is substantial, being 0.909 and 0.887 in the quarterly and monthly 
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cases, respectively. Overall, we anticipate that the seasonally adjusted random walk process 

will result in undersized DF test statistics when no allowance is made for the autocorrelation 

in this process. 

 

4.2 Autoregressive augmentation 

Now consider the ADF regression (8) applied to the filtered series of (19). The DGP is again 

the random walk of (18). As for the noninvertible moving average of Section 3, 

autoregressive augmentation results in a moving average error process, with MA coefficient 

values that can be computed exactly. In terms of the disturbances of (18), this MA is two-

sided and can be written as (see the Appendix) 
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where k is the maximum lag of the filter in (19). Proposition 5 establishes how these MA 

coefficients affect the asymptotic distributions of the unit root tests.  

 

Proposition 5. For an unadjusted series following the random walk process of (18), the 

ADF regression (8) applied to the filtered series of (19) has normalized bias and t-ratio test 

statistics that satisfy: 

 

( ) ( )[ ] ( )

( )∫

∑∑∑∑∑∑∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++−+−

⇒
=

+

+=

−

=

+

===
−

=

drrW

qqqqW

T

k

j
j

pk

ki

p
i

i

j
j

k

i

p
i

i

j
j

k

i

p
i

k

i
i

pp

2
02

1

0

1

1111

2 12111

2
1

ˆ

θθθθθ

α    (25) 

and 

( ) ( )[ ] ( )

( ) ( ) ( ) ( ) ( )
.

12111

2
1

222
0

22

02

1

0

1

1111

2

ˆ

⎟
⎠
⎞

⎜
⎝
⎛ ++++++

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++−+−

⇒

+−

=

+

+=

−

=

+

===
−

=

∫

∑∑∑∑∑∑∑

p
pk

p
k

pp
k

k

j
j

pk

ki

p
i

i

j
j

k

i

p
i

i

j
j

k

i

p
i

k

i
i

pp

drrW

qqqqW

t
θθθθ

θθθθθ

α

LLL

    (26) 

respectively, where p
iθ  are defined in (24) and ∑ +
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The normalized bias in (25) has both scaling and shift effects, compared with the DF 

distribution. Table 3 computes these effects for augmentation values p = 0, 1, 2, 3, 4, 8, …, 

20, 40, 100, 200 for quarterly data. As in the simple noninvertible case of Section 3, the shift 

effect that applies for the ADF test in both (25) and (26), compared with the corresponding 

DF distribution, can be either to the left or to the right, depending on the order p selected. 

Indeed, the shift is more marked for p = 3 than for lower orders of augmentation and in this 

case the shift is to the left. However, the shift is to the right for values of p that are multiples 

of 4. When considering the normalized bias in (25) the numerator scaling effect of θp(1) also 

applies. Although this is relatively unimportant for p = 4, the decline in θp(1) away from 

unity as p increases implies that the normalized bias statistic may not approach the DF 

distribution as p increases. Although they do not derive the analytical distribution as in (25), 

Ghysels and Perron (1993) also note that the asymptotic distribution of the normalized bias 

statistic is affected by seasonal adjustment. 

For the more commonly used t-ratio test, a denominator scaling also applies in (26) 

compared with the DF distribution of (7). The final two columns of Table 3 indicate that 

both the ratio of the two scaling effects and the shift tend to decline (toward unity and zero, 

respectively) as p increases. However, this is not monotonic; indeed, the scaling ratio and the 

scaled shift are larger with p = 20 than the corresponding values when no augmentation is 

used. For intermediate values of p, and considering values that are multiples of four, the 

scaling and shift effects will lead to even larger distortions compared with the DF 

distribution than for no augmentation. Therefore, although these effects are relatively 

unimportant for p = 100, the results imply that very large orders of augmentation (and well 

beyond those used in empirical studies, even with large samples) are required to render the 

asymptotic distribution of the ADF t-statistic in the seasonally adjusted random walk close to 

that of the DF distribution.  
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To provide more detail of these effects, Table 4 reports the quantiles of the empirical 

approximation to the asymptotic distribution of (26). A random walk without filtering 

(requiring no augmentation) and filtered by the X-11 linear approximation5 (with 

augmentation orders as in Table 3) are considered. These results support the analytical ones, 

showing that the distribution can be shifted to the left or right, depending on the order of 

augmentation. Using a nominal significance level of 5 percent, the presence of 

over/undersizing depends on the sign of the numerator shift term. Oversizing is evident 

particularly when p = 3, for which the entire distribution in (26) is substantially shifted to the 

left compared with the DF distribution.  

It is evident from Table 4 that increasing the order of augmentation does not 

necessarily lead to an improved approximation to the DF distribution, since relatively little 

distortion is obtained with the inclusion of only one augmentation lag, although the test is 

under-sized (at a nominal 5 percent level) even in this case. Due to the scaling effect in (26), 

shown in Table 3, the size distortion is particularly marked when p is a multiple of 4. For 

these values, the shift is always positive and the test continues to be undersized. Indeed, the 

distribution in Table 4 is largely unchanged for p = 4, 8, 12 and is shifted further to the right 

in these cases than when the DF regression without augmentation is used. As discussed 

above, the distribution with p = 20 suffers greater distortion than p = 0, with this being 

particularly notable for the left-hand tail. Although reduced with p = 40, the distortion 

remains substantial, with these results again emphasizing the extremely high orders of 

augmentation required asymptotically to approximate the complicated and noninvertible 

moving average characteristics induced by seasonal adjustment. 

 

                                                 
5  In order to apply the two-sided quarterly filter, 50 additional observations are generated at the beginning and 

at the end of the sample when filtered data are used, but only the central observations are used in the 
computations. 
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4.3 Phillips-Perron approach 

Since, after seasonal adjustment, ut = it

k

ki
iq +

−

=
∑ ε  in (19), the variance and autocovariances of 

ut are given by 
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The PP approach aims to account for these autocovariances nonparametrically, through 

(12)/(13), with Proposition 6 giving the resulting asymptotic distributions for the random 

walk DGP. 

 

Proposition 6. For an unadjusted series following the random walk process of (18), the PP 

test statistics of (12) and (13), applied to the seasonally adjusted series of (19), have 

asymptotic distributions 
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It is evident from (27) that the seasonal adjustment filter induces a shift term in 

)ˆ(αZ , while both shift and scale effects are present in ( )α̂tZ . Further, the weighting function 

appears in these expressions, and hence plays a role in the asymptotic distributions. Table 5 

computes these shift and scale terms for selected values of p in the case of the Bartlett 

window. The shift effect is especially marked for p = 1 and 2, but is relatively modest for 

p ≥ 8. Since the denominator scaling factor is also close to unity for such values of p, it is 

anticipated that p ≥ 8 might be sufficient to account for most of the moving average effects, 

including the noninvertible roots, induced by seasonal adjustment. 

To investigate further, Table 6 presents the simulated asymptotic distribution for 

( )α̂tZ , when the PP statistic applied to a seasonally adjusted random walk and the Bartlett 

window is employed. Although the distribution is always shifted to the right, as anticipated 

the shift is largely invariant to p, provided p ≥ 8. However, the effect is not monotonic, and 

p = 3 also provides a good approximation to the DF t-ratio distribution. Notice that, although 

the shift terms for p = 4, 8 in Table 5 are negative, the scale factors in these cases are greater 

than unity, and the test is always undersized (at the nominal 5 percent level) in Table 6.   

It should also be noted that although the PP test applied to a seasonally adjusted 

random walk in Table 6 has better size properties (at the nominal 5 percent level), in general, 

than the ADF test in Table 4, the PP test remains undersized by around 10 percent even if 

sample autocovariances to order 200 are considered.  

 

4.4 Finite sample Monte Carlo analysis 

The above analysis establishes the potentially nontrivial asymptotic effects of seasonal 

adjustment on unit root tests. Therefore, we next investigate the effects for finite samples and 

a wider range of I(1) processes. 
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Tables 7 and 8 show the empirical size obtained in a Monte Carlo analysis for a 

sample of T = 200 observations, using the ADF t-ratio test and the PP ( )α̂tZ  statistics, 

respectively, computed for unfiltered and filtered data when the nominal size is 5 percent. In 

each case we use p = 0, 1, 2, 3, 4, 8, 12, where 12 represents the maximum order that might 

be used by a practitioner for a quarterly sample of this size6.  

The DGP is that of Ghysels and Perron (1993), with the unfiltered data generated 

from an unobserved components I(1) process as  
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where both ε in (29) are mutually uncorrelated independent standard Normal variables. The 

results shown are for regressions including an intercept7. In addition to the seasonal DGPs 

considered by Ghysels and Perron, we also examine three cases (including the random walk) 

where the DGP contains no seasonality8, and hence 0=s
ty , in order to allow comparison 

with the theoretical analysis above.  

 Note, first, that the finite sample properties for the test size of the seasonally adjusted 

random walk in Tables 7 and 8, shown as the first DGP, are very similar to the asymptotic 

properties of the ADF and PP tests Tables 4 and 6, respectively. Thus, for example, the 

oversizing of the ADF test with p = 3 applied to adjusted data in Table 4 is not simply an 

asymptotic property and is repeated in Table 7, while the size is better when the test is not 

corrected for autocorrelation compared with the cases where an ADF test with orders of 

augmentation p = 4, 8, 12 are used. Similarly, the PP test (using the Bartlett window) is 

                                                 
6  Of course, the results are identical when p = 0, and hence these are reported only in Table 7. 
7  Results were also computed without an intercept, with both sets also computed for a sample of size T = 400. 

These results were qualitatively very similar to those shown. 
8  While it might be considered unrealistic to apply seasonal adjustment in such cases, it should be borne in 

mind that (29) allows only stochastic seasonality. Since deterministic seasonality is annihilated by seasonal 
adjustment, with the same effect on the stochastic properties as in the nonseasonal case, we anticipate that the 
addition of deterministic seasonality would not change the pattern of results we obtain. 
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always undersized for this DGP after seasonal adjustment in Table 8, as in Table 6, 

irrespective of the value of p chosen. In almost all cases, the empirical size for this DGP is 

better using unadjusted data than adjusted series, whichever test is applied. 

This last comment also applies to the ADF test applied to a nonseasonal MA with 

coefficient 0.5 in Table 7, but adjustment has little effect on the size of the PP test for this 

case in Table 8. Whether adjusted or not, the PP test is badly oversized when the MA 

coefficient is negative, whereas AR augmentation performs quite well for p ≥ 4.  

For the unfiltered data and for all DGPs of Table 7, reasonable empirical size are 

generally obtained for the ADF test applied with p = 8, which is sufficient to account for 

(most of) the seasonal autocorrelation. However, for DGPs with a nonzero seasonal moving 

coefficient θs, p = 12 is sometimes required; see, for example, the combinations with θ = 0.5, 

θs = 0.5. In contrast, the PP test applied to unadjusted data in Table 8 is always substantially 

oversized when the DGP contains a seasonal component. This is due to the Bartlett window 

not allowing for seasonality, and giving less weight to low order nonseasonal lags than to 

seasonal ones.  

Now we turn to a discussion of the empirical size of the ADF test for a seasonal time 

series after application of the seasonal adjustment filter. The unit root test has good size 

properties for some of these cases in Table 7, even without augmentation. This occurs when 

a strong positive seasonal autoregressive coefficient (φs = 0.5, 0.8, 0.9) combines with a 

positive nonseasonal MA coefficient (θ = 0.5), when the true DGP has similar empirical 

properties as the DGP for which X-11 is the optimal filter. Otherwise, the test is oversized 

for seasonal DGPs when the test regression is not augmented. It is notable that augmentation 

with p  = 4 generally improves the size, but higher orders quite often lead to a deterioration 

in size. This is in line with Table 2, where the distortionary effects of adjustment on the 
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scaling ratio and scaled shift compared with the DF distribution are greater with p = 8 and 12 

than with p = 4.  

It is also notable that (with the exception of cases with negative θ) reasonable 

empirical sizes are generally obtained for filtered data in Table 7 with p = 1 and p = 2. This 

appears to result from a combination of the relatively small distortion induced by seasonal 

adjustment with these augmentation orders (see Tables 2 and 3) and the empirical proximity 

of DGPs with positive nonseasonal MA and strong positive seasonal AR coefficients to the 

DGP implicitly assumed by X-11.  

 The PP tests applied to filtered data, Table 8, does not perform well for a purely 

seasonal process, and is always oversized when θ = 0. Although seasonal adjustment reduces 

this oversizing, it nevertheless remains substantial. However, its performance is even worse 

in the presence of a negative MA(1) coefficient, where the oversizing is severe irrespective 

of the value of p employed and whether the data are unadjusted or seasonally adjusted. 

 The only set of seasonal time series in Table 8 for which the PP test has 

approximately the correct size after seasonal adjustment are those where φs = 0.5, 0.8, 0.9 

combines the positive nonseasonal MA with θ = 0.5, and hence (as mentioned above) the 

true DGP has similar empirical properties to the DGP for which X-11 is the optimal filter. In 

this case, seasonal adjustment is successful in removing the seasonal component and the PP 

test performs well. 

 

 

5. Concluding remarks 

Our analysis has shown that large size distortions can result in the distributions of both 

(Augmented) Dickey-Fuller and Phillips-Perron unit root test statistics when these are 

applied to processes containing noninvertible seasonal moving average unit roots. Indeed, 
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we believe that our analytical results are the first to be derived for these tests in the presence 

of such noninvertible moving averages. 

For the case of a I(1) process with such a moving average root, we show that 

autoregressive augmentation of any order does not remove this unit root and we obtain exact 

analytical expressions for the asymptotic DF distributions. The corresponding analysis for 

the PP tests emphasizes the role of the weighting function. Our analysis is extended to the 

case of a seasonally adjusted random walk, which contains the full set of seasonal moving 

average roots. Here very high orders of autoregressive augmentation are required to 

approximate the null DF distribution, whereas the PP test (although undersized) performs 

reasonably well when 8 or more sample autocovariances are considered. 

 In common with the results of Galbraith and Zinde-Walsh (1999) and Gonzalo and 

Pitarakis (1998), who study unit root tests in the presence of invertible moving average 

processes, we find that the asymptotic distribution of ADF statistics depend on the order of 

augmentation adopted. However, a surprising, and important, finding of our analysis is that 

increasing the order of augmentation does not necessarily lead to an asymptotic distribution 

for the ADF test that more closely approximates the corresponding DF one. Indeed, 

asymptotically, applying the ADF test with 20 lags to a quarterly seasonally adjusted random 

walk data results in worse distortion than no augmentation at all. Further, since the DF test 

statistics can be either under or oversized, depending on the order of augmentation, it is 

difficult for the applied worker to make any informal allowance for the distortions than may 

apply. Nevertheless, the use of augmentation orders that are multiples of four with quarterly 

data will typically result in undersizing. In contrast, the PP test is always undersized. 

Despite the relatively accurate size for the PP test for a seasonally adjusted random 

walk, this does not carry over when the DGP is itself a seasonal series. Indeed, our results 

imply that the PP test is badly oversized when applied to a seasonal time series after seasonal 
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adjustment, unless the DGP has characteristics (specifically, a strong positive seasonal 

autoregressive component and a positive nonseasonal moving average) that approximate the 

properties of the DGP for which X-11 seasonal adjustment is optimal.  

 Because of the complicated effects of adjustment, our recommendation is that unit 

root analysis should be applied to the seasonally unadjusted series. If an ADF approach is 

adopted, this should be combined with diagnostic testing that an appropriate order of 

augmentation is used. Because the weighting functions used in conjunction with the PP test 

typically allocate smaller weights to sample autocovariances at longer lags, this approach 

does not account for strong seasonal autocovariances and hence is not to be recommended 

for application to seasonal time series. 
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Appendix 
 
 

Proof of Proposition 1 
Phillips (1987) shows that the distribution of the normalized bias for any moving average 
process disturbance process ut = θ(L)εt, with σ2 = E(εt

2), is: 
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and that for the t-ratio test statistic is: 
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where W(r) is standard Brownian motion, γ0 = E(ut
2) and λ2 = [θ(1)]2σ2. For the noninvertible 

moving average ut = εt + εt-1 of interest, γ0 = 2σ2 and λ2 = 4σ2, so that (A.1) and (A.2) become 
(5) and (6) respectively. 

■ 
 

With augmentation and under the (true) null hypothesis in (8) of α = 0, the 
corresponding “pseudo-true” process can be written  
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OLS estimation of the vector φp = (φ1
p, …, φp

p)' in (A.3) yields 

   γφφ 1ˆ −Γ=→ pp       (A.4) 

with Γ being the (p × p) covariance matrix for ∆yt with (i, j)th element E(∆yt-i∆yt-j), and γ  is 
the (p × 1) vector of autocovariances with jth element E(∆yt∆yt-j) for j = 1, …, p.  When ut = 
εt + εt-1, these take the simple form 
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 Note that the elements of φp depend on the autoregressive augmentation order p 
selected. Specifically, using results for the inverse of the covariance matrix for an MA(1) 
process (Shaman, 1969; Galbraith and Galbraith, 1974), it follows for our case that 
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where γij is the (i, j)th element of Γ-1. Therefore, using (A.5) and (A.6),  
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The “disturbance” series et
p in (A.3) is a MA(p+1) process, which is easy to see since  
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Using (A.7) and (A.8), yields the MA coefficients given in (9). 
 Therefore, the AR(p) approximation in (A.3) to the DGP ∆yt = εt + εt-1 leads to an 
MA(p+1) disturbance in the ADF regression, with the AR and MA coefficients given by 
(A.7) and (9) respectively. To see that the noninvertible MA seasonal unit root unit root -1 
remains in the MA process with coefficients in (9), note that 
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and hence -1 is a root of this MA process. 

 
Proof of Proposition 2 

OLS estimation of (8) yields 0ˆ →α  (Phillips, 1987) and, using (A.3),  
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For the same reasons as when the true DGP is of the autoregressive form (see, for example, 
Hamilton, 1994, pp.516-527), different rates of convergence apply to the coefficients of the 
nonstationary and stationary variables in (8), leading us to consider 
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where the (p × 1) vector h has jth element T-3/2Σyt-1∆yt-j and the (p × 1) vector g has jth 
element T-1/2Σ et

p∆yt-1.  
In (A.10), 
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Standard results (see, for example, Hamilton, 1994, pp.505.506) imply that 
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which collapses to (A.1) when p = 0.  
 Now, from (9), 
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then using (A.14), (A.15) and (A.16), it is straightforward to obtain (10). 
 For the t-ratio test we have that: 
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where, using (9),  
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This, together with (A.11) and (10), yields the distribution for the t-ratio statistic in (11).  
■ 
 
Proof of Proposition 3 
As ut = εt + εt-1, the autocovariances of ut are [ ] 22

0 2σγ == tuE , [ ] 2
11 σγ == −ttuuE  and 

[ ] 0== − jttj uuEγ  for j>1. Therefore, from (14) and under the null hypothesis α = 0, 
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where → indicates convergence in probability. Then (15) and (16) are easily obtained by 
substituting (5) and (6), together with (A.18) into (12) and (13), and also using 
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Proof of (20) 

The filtered random walk of (19) is given by 
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where q(1) = q0 + 2q1 + …+ 2qk = 1 since the weights of the symmetric X-11 filter sum to 
unity, and we also use the assumption εj = 0, j ≤ 0. 
 
Proof of Proposition 4 
Using (A.19), it can be seen that 
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Standard results (for example, Hamilton, 1994, equation 17.3.26) imply that 
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Further, due to white noise εt, it is straightforward to see that 
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Hence the asymptotic distribution corresponding to (A.20) is 
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To obtain the asymptotic distribution of the normalized bias for the filtered random 
walk, note that 
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and, similarly, 
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Further, 
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where we use the symmetry of q(L) and also the relationship 
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which follows from symmetry together with q(1) = 1. Therefore, using (A.22), (A.23) 
satisfies 
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The denominator of (22) follows as 
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(Hamilton, 1994, pp.505-506). Using (A.26) and (A.27) then yields (22). 
The t-ratio for the filtered data is 
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obtained. 
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With augmentation of the test regression applied to seasonally adjusted data, under 
the null hypothesis α = 0, the “pseudo-true” regression is 
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where, as in (A.3), both the asymptotic AR coefficients φi
p and the corresponding 

“disturbance” et
p depend on the order of autoregressive augmentation, p. Suitably amended to 

relate to the filtered series, (A.4) also continues to apply, so that the coefficients φi
p can be 

obtained from the autocovariance properties of ut. In an analogous manner to that discussed 
in the proof of Proposition 2, and due to the noninvertibility of the two-sided moving average 
process in (19), et

p is autocorrelated for all values of p. More specifically, it follows from (19) 
and (A.28) that 
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where θp(L) is a two-sided moving average, with k + p nonzero lags and k nonzero leads; this 
establishes (24) of the text. For a given data frequency (typically quarterly or monthly) and 
given p, the implied (asymptotic) moving average coefficients of (A.29) can be obtained 
analytically.  

 
Proof of Proposition 5 
When the ADF regression for the seasonally adjusted random walk is augmented to order p, 
OLS estimation yields 
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The different rates of convergence that apply to the coefficients corresponding to the 
nonstationary and stationary regressors leads us to consider 
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where the (p × 1) vector h has ith element 0
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Using (A.22), together with (A.24) and (A.25), we have 
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This expression, together with (A.27), yields the asymptotic distribution given in (25). 
The corresponding t-ratio is given by 
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and (26) is obtained by noting that since 0ˆ →α  and p
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Proof of Proposition 6 
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and, substituting these (22), (23) and (A.27) into (12) and (13), (27) and (28) are easily 
obtained.  
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Table 1. 

The Null Distribution of the Dickey-Fuller t-Statistic in the Presence of a Noninvertible Moving Average 
 

Quantile 0.010 0.025 0.050 0.100 0.500 0.900 0.950 0.975 0.990 Size 

DF distribution -2.565 -2.248 -1.958 -1.626 -0.510 0.860 1.260 1.635 2.030 0.051 
Noninvertible MA Process with Augmentation 
p = 0 -1.770 -1.518 -1.300 -1.055 -0.059 1.646 2.151 2.607 3.119 0.005 
p = 1 -3.210 -2.762 -2.409 -2.037 -0.765 0.495 0.832 1.128 1.444 0.115 
p = 2 -2.223 -1.902 -1.647 -1.359 -0.313 1.177 1.612 1.994 2.411 0.021 
p = 3 -2.905 -2.500 -2.186 -1.828 -0.640 0.661 1.026 1.335 1.665 0.081 
p = 4 -2.348 -2.009 -1.743 -1.443 -0.380 1.064 1.483 1.837 2.245 0.029 
p = 8 -2.440 -2.098 -1.819 -1.508 -0.428 0.979 1.391 1.737 2.122 0.037 
p = 12 -2.486 -2.133 -1.849 -1.535 -0.447 0.944 1.358 1.691 2.077 0.039 
p = 16 -2.474 -2.143 -1.878 -1.563 -0.456 0.944 1.324 1.662 2.090 0.042 
p = 20 -2.487 -2.163 -1.890 -1.568 -0.472 0.932 1.316 1.663 2.060 0.044 
p = 24 -2.470 -2.177 -1.888 -1.575 -0.472 0.927 1.299 1.637 2.048 0.043 

 
Notes: The quantiles of the empirical distribution of the ADF test t-ratio test are based 15,000 replications and a sample size 
of 4,000 observations. The DF distribution is obtained from a random walk where the innovation is the white noise process 
εt ~ N(0, 1). The noninvertible MA is an I(1) process where the innovation is given by ut = εt  + εt-1, εt ~ N(0, 1), and the 
ADF regression is estimated with no augmentation and augmentation orders p = 1, 2, 3, 4, 8, 12, 16, 20, 24. 
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Table 2. 

The Null Distribution of the Phillips-Perron ( )α̂tZ  Statistic in the Presence of a Noninvertible Moving Average 
 

Quantile 0.010 0.025 0.050 0.100 0.500 0.900 0.950 0.975 0.990 Size 

DF distribution -2.565 -2.248 -1.958 -1.626 -0.510 0.860 1.260 1.635 2.030 0.051 
Noninvertible MA Process with Autocorrelation Correction 

p = 0 -1.782 -1.538 -1.336 -1.072 -0.063 1.666 2.161 2.609 3.127 0.005 
p = 1 -2.215 -1.929 -1.680 -1.376 -0.320 1.190 1.616 1.980 2.430 0.024 
p = 2 -2.344 -2.038 -1.785 -1.466 -0.389 1.081 1.485 1.841 2.259 0.032 
p = 3 -2.403 -2.094 -1.834 -1.507 -0.417 1.032 1.429 1.780 2.196 0.038 
p = 4 -2.444 -2.123 -1.867 -1.532 -0.436 1.004 1.397 1.747 2.156 0.041 
p = 8 -2.504 -2.172 -1.916 -1.575 -0.465 0.955 1.346 1.697 2.077 0.047 
p = 12 -2.541 -2.196 -1.935 -1.590 -0.475 0.940 1.330 1.671 2.056 0.048 
p = 16 -2.560 -2.210 -1.944 -1.597 -0.481 0.926 1.318 1.659 2.041 0.049 
p = 20 -2.569 -2.211 -1.945 -1.598 -0.485 0.925 1.310 1.645 2.037 0.050 
p = 24 -2.569 -2.219 -1.946 -1.601 -0.486 0.925 1.312 1.643 2.045 0.050 

 
Notes: The quantiles of the empirical distribution of the ( )α̂tZ  test are based 15,000 replications and a sample size of 4,000 
observations. The DF distribution is obtained from a random walk where the innovation is the white noise process εt ~ N(0, 
1). The noninvertible MA is an I(1) process where the innovation is given by ut = εt  + εt-1, εt ~ N(0, 1), and the ( )α̂tZ  is 
statistic is computed for autocorrelation corrections to order p = 1, 2, 3, 4, 8, 12, 16, 20, 24 using the Bartlett spectral window. 
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Table 3. 

Scaling and Shift Terms for the Augmented Dickey-Fuller Statistics applied to a 
Seasonally Adjusted Random Walk 

 

Augmentation 
Numerator 

shift 
Numerator 

scaling 
Denominator 

scaling 
Ratio of 
scalings 

Scaled 
Shift 

p = 0 0.174 1.000 0.909 1.100 0.191 
p = 1 0.043 0.929 0.907 1.024 0.048 
p = 2 -0.063 0.874 0.905 0.966 -0.070 
p = 3 -0.188 0.814 0.903 0.901 -0.209
p = 4 0.223 0.998 0.879 1.135 0.254 
p = 8 0.227 0.969 0.848 1.143 0.268 
p = 12 0.220 0.936 0.818 1.143 0.269 
p = 16 0.178 0.892 0.798 1.118 0.223 
p = 20 0.161 0.867 0.782 1.108 0.206 
p = 40 0.100 0.789 0.738 1.070 0.135 
p = 100 -0.002 0.704 0.695 1.012 -0.002 
p = 200 0.002 0.681 0.680 1.002 0.003 

 
Notes: The scaling and shift terms relate to seasonal adjustment of a random walk, with the 
test regression augmented to order p; see (25) and (26). The numerator shift term is 
defined by 
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the numerator scaling is given by θp(1) and the denominator scaling by ∑
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2)(θ . The 

ratio of scalings presents the ratio of the numerator to the denominator scaling, while the 
scaled shift is the numerator shift divided by the denominator scaling. 
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Table 4. 

Quantiles and Size of the Augmented Dickey-Fuller t-Statistic for a Seasonally Adjusted Random Walk 
 

Quantile 0.010 0.025 0.050 0.100 0.500 0.900 0.950 0.975 0.990 Size 
DF distribution -2.628 -2.220 -1.944 -1.620 -0.511 0.883 1.274 1.621 1.995 0.049 
Seasonally Adjusted Random Walk with Augmentation 
p = 0 -2.354 -2.039 -1.762 -1.451 -0.384 1.063 1.489 1.856 2.265 0.031 
p = 1 -2.557 -2.206 -1.901 -1.574 -0.473 0.928 1.315 1.662 2.047 0.045 
p = 2 -2.698 -2.346 -2.023 -1.683 -0.544 0.816 1.182 1.518 1.900 0.058 
p = 3 -2.902 -2.518 -2.186 -1.824 -0.634 0.679 1.033 1.347 1.712 0.079 
p = 4 -2.282 -1.977 -1.699 -1.403 -0.341 1.126 1.561 1.942 2.374 0.027 
p = 8 -2.261 -1.956 -1.693 -1.390 -0.331 1.150 1.580 1.946 2.370 0.025 
p = 12 -2.261 -1.953 -1.688 -1.385 -0.333 1.156 1.586 1.954 2.396 0.025 
p = 16 -2.296 -1.962 -1.723 -1.415 -0.358 1.104 1.501 1.879 2.277 0.026 
p = 20 -2.313 -1.983 -1.731 -1.430 -0.366 1.094 1.481 1.857 2.276 0.028 
p = 40 -2.391 -2.076 -1.807 -1.493 -0.417 1.034 1.454 1.808 2.205 0.036 
p = 100 -2.542 -2.196 -1.894 -1.584 -0.478 0.919 1.317 1.685 2.047 0.044 
p = 200 -2.507 -2.179 -1.882 -1.581 -0.473 0.935 1.343 1.681 2.083 0.043 

 
Notes: The quantiles of the empirical distribution of the ADF test t-ratio test are based 15,000 replications and a sample size 
of 4,000 observations, with the test regression augmented to order p. The DF distribution is obtained from a random walk 
where the innovation is the white noise process εt ~ N(0, 1). Seasonal adjustment is applied to a random walk using the 
linear approximation to the two-sided quarterly X-11 filter, with 50 additional observation generated and discarded from the 
beginning and end of the sample. The nominal size is 0.05 for all cases. 
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Table 5. 

Scaling and Shift Terms for the Phillips-Perron ( )α̂tZ  Statistic  
applied to a Seasonally Adjusted Random Walk 

 
Augmentation Shift factor Scaling factor 

p = 1 0.115 0.885 
p = 2 0.095 0.967 
p = 3 0.033 0.905
p = 4 -0.035 1.035 
p = 8 -0.006 1.006 
p = 12 0.004 0.996 
p = 16 0.010 0.990 
p = 20 0.008 0.992 
p = 40 0.004 0.996 
p = 100 0.001 0.999 
p = 200 0.001 0.999 

 
Notes : The scaling and shift terms relate to seasonal 
adjustment of a random walk; see (27) and (28), 
using an autocorrelation correction to order p and the 
Bartlett weights. The shift term is given by 
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Table 6. 

Quantiles and Size of the Phillips-Perron ( )α̂tZ  Statistic for a  
Seasonally Adjusted Random Walk 

 
Quantile 0.010 0.025 0.050 0.100 0.500 0.900 0.950 0.975 0.990 Size 
DF distribution -2.628 -2.220 -1.944 -1.620 -0.511 0.883 1.274 1.621 1.995 0.049 
Seasonally Adjusted Random Walk with Autocorrelation Correction 
p = 0 -2.273 -1.973 -1.732 -1.444 -0.376 1.083 1.484 1.883 2.301 0.027 
p = 1 -2.374 -2.049 -1.802 -1.504 -0.418 1.009 1.406 1.783 2.211 0.033 
p = 2 -2.447 -2.116 -1.861 -1.555 -0.458 0.952 1.338 1.710 2.120 0.039 
p = 3 -2.538 -2.189 -1.922 -1.612 -0.497 0.891 1.268 1.628 2.034 0.047 
p = 4 -2.485 -2.148 -1.889 -1.579 -0.475 0.926 1.310 1.671 2.078 0.042 
p = 8 -2.498 -2.170 -1.905 -1.595 -0.485 0.911 1.293 1.654 2.057 0.045 
p = 12 -2.505 -2.175 -1.911 -1.601 -0.488 0.900 1.290 1.655 2.053 0.046 
p = 16 -2.515 -2.177 -1.915 -1.603 -0.488 0.902 1.284 1.657 2.049 0.046 
p = 20 -2.506 -2.176 -1.916 -1.603 -0.490 0.900 1.288 1.669 2.049 0.046 
p = 40 -2.534 -2.183 -1.915 -1.607 -0.490 0.907 1.291 1.658 2.048 0.046 
p = 100 -2.507 -2.184 -1.909 -1.604 -0.489 0.916 1.326 1.702 2.143 0.046 
p = 200 -2.464 -2.165 -1.908 -1.605 -0.492 0.953 1.398 1.752 2.259 0.045 

 
Notes: The quantiles of the empirical distribution of the ( )α̂tZ  test are based 15,000 replications and a sample size of 4,000 
observations, with an autocorrelation correction applied to order p using Bartlett weights. The DF distribution is obtained 
from a random walk where the innovation is the white noise process εt ~ N(0, 1). Seasonal adjustment is applied to a random 
walk using the linear approximation to the two-sided quarterly X-11 filter, with 50 additional observation generated and 
discarded from the beginning and end of the sample. The nominal size is 0.05 for all cases. 
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Table 7.  

Size of ADF t-Statistic for 200 Observations using Unfiltered (u) and Filtered (f) Data 

θ θs φs  p = 0 p = 1 p = 2 p = 3 p = 4 p = 8 p = 12
0 0 0 u 0.050 0.049 0.048 0.049 0.046 0.048 0.043 
   f 0.035 0.045 0.056 0.081 0.029 0.030 0.028 

0.5 0 0 u 0.023 0.085 0.039 0.059 0.046 0.048 0.045 
   f 0.022 0.092 0.050 0.059 0.030 0.028 0.027 

-0.5 0 0 u 0.592 0.224 0.109 0.074 0.062 0.049 0.044 
   f 0.481 0.161 0.083 0.132 0.049 0.038 0.036 

0 0 0.5 u 0.451 0.162 0.076 0.023 0.060 0.046 0.042 
   f 0.207 0.068 0.054 0.064 0.039 0.032 0.031 
  0.8 u 0.694 0.304 0.139 0.025 0.069 0.049 0.043 
   f 0.167 0.067 0.054 0.056 0.043 0.036 0.034 
  0.9 u 0.861 0.504 0.258 0.026 0.066 0.051 0.049 
   f 0.157 0.067 0.051 0.052 0.046 0.037 0.039 
 0.5 0.5 u 0.643 0.258 0.123 0.024 0.059 0.040 0.046 
   f 0.245 0.088 0.054 0.035 0.051 0.030 0.034 
  0.8 u 0.889 0.535 0.276 0.029 0.062 0.047 0.046 
   f 0.218 0.086 0.055 0.038 0.053 0.039 0.038 
  0.9 u 0.970 0.748 0.493 0.028 0.064 0.045 0.048 
   f 0.205 0.088 0.053 0.032 0.050 0.035 0.038 
 -0.5 0.8 u 0.442 0.147 0.072 0.028 0.056 0.046 0.052 
   f 0.210 0.068 0.050 0.084 0.037 0.031 0.035 
  0.9 u 0.563 0.214 0.104 0.028 0.065 0.055 0.051 
   f 0.186 0.068 0.055 0.086 0.041 0.036 0.034 

0.5 0 0.5 u 0.169 0.071 0.057 0.029 0.077 0.049 0.049 
   f 0.057 0.052 0.057 0.061 0.041 0.033 0.034 
  0.8 u 0.376 0.132 0.068 0.026 0.113 0.055 0.045 
   f 0.042 0.044 0.050 0.051 0.044 0.036 0.033 
  0.9 u 0.598 0.248 0.109 0.027 0.131 0.054 0.042 
   f 0.041 0.051 0.054 0.054 0.048 0.034 0.030 
 0.5 0.5 u 0.307 0.100 0.058 0.023 0.089 0.036 0.048 
   f 0.059 0.047 0.045 0.036 0.051 0.026 0.033 
  0.8 u 0.633 0.266 0.119 0.028 0.119 0.037 0.049 
   f 0.056 0.051 0.049 0.038 0.064 0.030 0.036 
  0.9 u 0.837 0.472 0.234 0.031 0.120 0.034 0.048 
   f 0.050 0.046 0.042 0.033 0.058 0.028 0.036 

 -0.5 0.8 u 0.139 0.062 0.047 0.026 0.069 0.055 0.044 
   f 0.047 0.041 0.049 0.075 0.029 0.029 0.027 
  0.9 u 0.249 0.090 0.059 0.023 0.090 0.067 0.055 
   f 0.048 0.045 0.054 0.077 0.035 0.032 0.031 
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Table 7 (continued) 
 

θ θs φs  p = 0 p = 1 p = 2 p = 3 p = 4 p = 8 p = 12
-0.5 0 0.5 u 0.947 0.648 0.376 0.067 0.082 0.056 0.051 

   f 0.816 0.408 0.192 0.162 0.072 0.050 0.042 
  0.8 u 0.986 0.814 0.568 0.030 0.062 0.049 0.047 
   f 0.767 0.370 0.156 0.116 0.058 0.040 0.037 
  0.9 u 0.997 0.908 0.718 0.024 0.050 0.044 0.044 
   f 0.730 0.338 0.143 0.102 0.047 0.040 0.038 
 0.5 0.5 u 0.980 0.777 0.515 0.037 0.066 0.075 0.058 
   f 0.830 0.451 0.205 0.096 0.061 0.059 0.049 
  0.8 u 1.000 0.930 0.758 0.019 0.041 0.062 0.060 
   f 0.789 0.398 0.170 0.056 0.043 0.050 0.047 
  0.9 u 1.000 0.976 0.885 0.020 0.036 0.052 0.049 
   f 0.750 0.350 0.139 0.048 0.039 0.042 0.041 
 -0.5 0.8 u 0.938 0.624 0.355 0.087 0.088 0.055 0.046 
   f 0.807 0.397 0.180 0.207 0.075 0.046 0.038 
  0.9 u 0.967 0.707 0.437 0.063 0.092 0.053 0.046 
   f 0.784 0.370 0.172 0.197 0.078 0.044 0.041 

Notes: The DGP is ns
ts

ns
t
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t
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t
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t

ns
t yyyy 4411 , −−−− ++=++= εθεφθεε . The ADF test 

regression includes an intercept and is augmented to order p. Results are based on 5,000 
replications and a sample size of 200 observations. Filtering applies the linear 
approximation to the two-sided quarterly X-11 seasonal adjustment filter, with 50 
additional observation generated and discarded at the beginning and end of the sample. 
The nominal size in all cases is 0.050. 
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Table 8.  
Size of PP ( )α̂tZ Statistic for 200 Observations using Unfiltered (u) and Filtered (f) Data 

θ θs φs  p = 1 p = 2 p = 3 p = 4 p = 8 p = 12 
0 0 0 u 0.048 0.048 0.050 0.050 0.054 0.056 
   f 0.038 0.041 0.046 0.042 0.044 0.044 

0.5 0 0 u 0.028 0.032 0.035 0.035 0.035 0.033 
   f 0.025 0.029 0.034 0.034 0.034 0.032 

-0.5 0 0 u 0.445 0.401 0.398 0.404 0.456 0.506 
   f 0.336 0.301 0.331 0.301 0.349 0.397 

0 0 0.5 u 0.316 0.287 0.248 0.288 0.332 0.374 
   f 0.143 0.130 0.138 0.131 0.152 0.172 
  0.8 u 0.551 0.509 0.429 0.512 0.562 0.607 
   f 0.114 0.105 0.107 0.105 0.119 0.136 
  0.9 u 0.743 0.703 0.621 0.705 0.752 0.788 
   f 0.111 0.101 0.102 0.102 0.113 0.127 
 0.5 0.5 u 0.490 0.448 0.378 0.449 0.504 0.550 
   f 0.161 0.145 0.134 0.143 0.168 0.195 
  0.8 u 0.770 0.735 0.650 0.735 0.781 0.814 
   f 0.152 0.133 0.121 0.131 0.153 0.179 
  0.9 u 0.917 0.897 0.846 0.900 0.921 0.940 
   f 0.137 0.120 0.108 0.118 0.145 0.165 
 -0.5 0.8 u 0.309 0.278 0.242 0.280 0.323 0.360 
   f 0.139 0.127 0.142 0.132 0.150 0.171 
  0.9 u 0.404 0.369 0.309 0.371 0.418 0.465 
   f 0.121 0.113 0.124 0.114 0.131 0.148 

0.5 0 0.5 u 0.116 0.107 0.088 0.108 0.122 0.136 
   f 0.047 0.051 0.054 0.053 0.056 0.058 
  0.8 u 0.260 0.236 0.170 0.235 0.272 0.309 
   f 0.040 0.043 0.045 0.045 0.047 0.047 
  0.9 u 0.456 0.414 0.324 0.414 0.465 0.516 
   f 0.044 0.045 0.047 0.047 0.050 0.050 
 0.5 0.5 u 0.206 0.183 0.138 0.183 0.215 0.248 
   f 0.051 0.052 0.050 0.055 0.060 0.063 
  0.8 u 0.482 0.438 0.341 0.437 0.492 0.540 
   f 0.052 0.053 0.050 0.055 0.060 0.060 
  0.9 u 0.717 0.670 0.578 0.674 0.723 0.767 
   f 0.055 0.056 0.053 0.058 0.060 0.061 

 -0.5 0.8 u 0.115 0.105 0.094 0.107 0.121 0.135 
   f 0.053 0.056 0.063 0.058 0.064 0.067 
  0.9 u 0.166 0.149 0.114 0.148 0.172 0.197 
   f 0.048 0.053 0.056 0.054 0.056 0.056 
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Table 8 (continued) 
 

θ θs φs  p = 1 p = 2 p = 3 p = 4 p = 8 p = 12 
-0.5 0 0.5 u 0.849 0.822 0.792 0.823 0.862 0.889 

   f 0.656 0.607 0.622 0.609 0.666 0.716 
  0.8 u 0.952 0.936 0.905 0.936 0.955 0.969 
   f 0.620 0.561 0.564 0.560 0.618 0.678 
  0.9 u 0.987 0.981 0.963 0.981 0.989 0.992 
   f 0.577 0.527 0.530 0.524 0.580 0.641 
 0.5 0.5 u 0.934 0.915 0.886 0.916 0.939 0.959 
   f 0.697 0.642 0.631 0.643 0.701 0.747 
  0.8 u 0.992 0.987 0.974 0.987 0.992 0.995 
   f 0.650 0.589 0.568 0.585 0.649 0.702 
  0.9 u 0.998 0.997 0.992 0.997 0.998 0.998 
   f 0.596 0.531 0.513 0.529 0.596 0.647 
 -0.5 0.8 u 0.840 0.808 0.783 0.808 0.847 0.880 
   f 0.654 0.609 0.632 0.610 0.664 0.709 
  0.9 u 0.902 0.876 0.850 0.877 0.906 0.931 
   f 0.645 0.596 0.623 0.597 0.655 0.699 

Notes: The DGP is ns
ts

ns
t
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t
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t yyyy 4411 , −−−− ++=++= εθεφθεε . The 

( )α̂tZ  test regression includes an intercept and an autocorrelation correction is 
applied to order p. Results are based on 5,000 replications and a sample size of 
200 observations. Filtering applies the linear approximation to the two-sided 
quarterly X-11 seasonal adjustment filter, with 50 additional observation 
generated and discarded at the beginning and end of the sample. The nominal 
size in all cases is 0.050. 
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