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RECENT DEVELOPMENTS IN BENCHMARKING TO
ANNUAL TOTALS IN X-12-ARIMA AND AT STATISTICS

CANADA

By Benôıt Quenneville,1 Susie Fortier,2 Zhao-Guo Chen

and Édith Latendresse

Statistics Canada, Time Series Research and Analysis Centre

X-12-ARIMA V03+ includes a spec, called FORCE, to produce the table of sea-

sonally adjusted series with constrained yearly totals. The method is based on a

benchmarking methodology developed at Statistics Canada. In X-12-ARIMA, the

control totals are restricted to be derived from the raw series. This paper gives the

ideas behind the method and also gives guidelines for the selection of the parame-

ters. We also present recent methodological developments toward the development

of a more generalized benchmarking procedure, which generalizes the benchmark-

ing method in X-12-ARIMA to include more options. For example, the input series

does not need to be seasonally adjusted for benchmarking; control totals can be ex-

ternal, and so, a bias parameter can be estimated. Finally we conclude this paper

with areas for further developments. Through the paper, we will provide examples

to illustrate the different cases.

Keywords: Binding and non-binding benchmarking, Constrained optimization,

Denton method, Linear regression model for benchmarking, Measurement errors.

1 Introduction

We define benchmarking as an adjustment of the level of a sub-annual series st, t =
1, . . . , T using auxiliary annual benchmarks am,m = 1, . . . ,M . We consider two im-
portant issues. The first one is to preserve movement in the sub-annual series as much
as possible. The second one is to account for the timeliness of annual benchmarks, in
the sense that the benchmarks for the observations at the end of the series may not be
available yet. The method we considered is driven by a few parameters:

1. The smoothing parameter 0 ≤ ρ ≤ 1 with suggested default values ρ = 0.9 for
monthly sub-annual series and ρ = 0.93 = 0.729 for quarterly sub-annual series.

2. The adjustment model parameter λ ∈ R with default value λ = 1 for a proportional
benchmarking model. Two other choices are λ = 0 for an additive benchmarking
model; and λ = 0.5 with ρ = 0, which is pro-rating.

1Benôıt Quenneville, 150 Tunney’s Pasture Drive, RH Coats Bldg., Ottawa, Ontario, Canada, K1A
0T6, tel. +1-613-951-1605, e-mail Benoit.Quenneville@Statcan.ca. Paper presented at the EUROSTAT
conference on Seasonality, Seasonal Adjustment and Their Implications for Short-Term Analysis and
Forecasting, Luxembourg, May 2006.

2Susie.Fortier@statcan.ca; contact author for Statistics Canada’s c©SAS PROC BENCHMARKING.
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3. The bias estimation option, which indicates if a bias parameter is to be estimated
or not.

In general, the sub-annual series, also referred to as the indicator series, st, t = 1, . . . , T ,
is associated with a series of dates. For this paper, it is enough to assume that the
date values take the form yyyy pp. The value yyyy represents the year. The value pp
represents the sub-annual period ranging from 1 to 12 for monthly sub-annual series, or
1 to 4 for quarterly sub-annual series. It is assumed that the dates are mapped into the
set of integers 1 to T .

Dates are also necessary for the annual benchmarks am,m = 1, . . . ,M . Annual bench-
marks have a starting date t1,m and an ending date t2,m such that 1 ≤ t1,m ≤ t2,m ≤ T .
With this notation, an annual benchmark covers t2,m − t1,m + 1 consecutive values from
t = t1,m to t2,m, and so, benchmarks can be aggregates or individual values at arbitrary
points along the series.

The benchmarked series, denoted by θ̂t, t = 1, . . . , T , is such that
∑t2,m

t=t1,m
θ̂t = am; m =

1, . . . ,M.

A simple matrix notation is very convenient to represent the relation between the sub-
annual series and its benchmarks. For this we define the coverage fractions and the
temporal sum operator.

For m = 1, . . . ,M , define the coverage fractions jm,t, t = 1, . . . , T as:

jm,t =

{

1 t1,m ≤ t ≤ t2,m

0 otherwise

Define the temporal sum operator as the matrix J of dimensions M × T containing the
coverage fractions:

J =







j1,1 j1,2 . . . j1,T
...

...
. . .

...
jM,1 jM,2 . . . jM,T






.

2 Bias Estimation

We define the bias as the expected discrepancy between an annual benchmark and its
related sub-annual values. Let 1M = (1, . . . , 1)′ be a M × 1 vector of 1; 1T = (1, . . . , 1)′

be a T × 1 vector of 1; a = (a1, . . . , aM)′; s = (s1, . . . , sT )′. A consistent estimate of the
bias is the average discrepancy:

b =

∑M
m=1

am −
∑M

m=1

∑t2,m

t=t1,m
st

∑M
m=1

∑t2,m

t=t1,m
1

=
1′M(a − Js)

1′MJ1T

. (1)

When it is more convenient to express the bias in term of a ratio instead of a difference
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in levels, the bias parameter can be estimated as

b =

∑M
m=1

am
∑M

m=1

∑t2,m

t=t1,m
st

=
1′Ma

1′MJs
. (2)

Once a bias parameter is estimated, one can decide to apply it or not. One can even think
of estimating the bias parameter with only a few of the most recent benchmarks. Let c
be the final value of the bias correction factor. Let s†t = c + st when the bias correction
factor is expressed in the term of a difference in the levels such as in Equation (1), or let
s†t = c · st when c is expressed as a ratio such as in Equation (2). The series s†t is called
the re-scaled sub-annual series.

The rationale for estimating a bias parameter with this simple method is provided in
Dagum and Cholette (2006, Chap. 6).

3 The target and start Arguments of the X-12-ARIMA

FORCE Spec

In the case of X-12-ARIMA, the bias option does not exist, and hence s†t = st. Instead,
the seasonally adjusted (SA) series st is benchmarked to annual control totals derived
from the corresponding raw series. The target argument specifies which series, say xt,
is used as the target for forcing the totals of the seasonally adjusted series. The choices
of target are

• the Original series,

• the Calendar adjusted series,

• the Original series adjusted for permanent prior adjustment factors,

• the Original series adjusted for calendar and permanent prior adjustment factors.

By default, the FORCE spec implies that the calendar year totals in the SA series will be
made equal to the calendar year totals of the target series. An alternative starting period
for the annual total can be specified with the start argument; consequently, annual total
starting at any other period other than that specified by the start argument may not
be equal. This will be illustrated in Figure 7 in Section 5.2.

Notation-wise, the modifications are as follows. The annual benchmarks am are derived
from the target series xt, t = 1, . . . , T . Let x = (x1, . . . , xT )′. If we write P = 4 for
quarterly series and P = 12 for monthly series, then a typical row of J will take the form
(0, . . . , 0, 1′P , 0, . . . , 0). The vector of benchmarks is a = Jx.

3



4 Benchmarking

Methodological details for the benchmarking formulae in this section are provided in
Section 7.

Define C as the T × T matrix with |s†t |
λ as the t-th element of the main diagonal and 0

elsewhere3.

The parameter ρ is used to select the way benchmarked values are computed.

For ρ < 1, the benchmarked series θ̂ =
(

θ̂1, . . . , θ̂T

)

is:

θ̂ = s† + VeJ
′V −1

d

(

a − Js†
)

. (3)

In this equation, Vd = JVeJ
′; Ve = CΩeC; and Ωe is the T × T matrix4 defined by

Ωe = ((ρ|i−j|)), i, j = 1, . . . , T .

For ρ = 1, the benchmarked series θ̂ is:

θ̂ = s† + W
(

a − Js†
)

. (4)

In this equation, W is the T × M upper-right corner matrix from the following matrix
product:

[

C−1∆′∆C−1 J ′

J 0

]−1 [

C−1∆′∆C−1 0
J IM

]

=

[

IT W
0 Wν

]

;

∆ is the T − 1 × T matrix with −1 at index (i, i), 1 at index (i, i + 1), i = 1, . . . , T − 1,
and 0 elsewhere; and IM is the M × M Identity matrix. (The M × M matrix Wν is
associated with the Lagrange multipliers.)

5 Available Benchmarking Programs and Examples

The FORCE spec is available for testing with X-12-ARIMA Version 0.3. Interested
persons should write to X12@census.gov for more information.

At Statistics Canada, we are developing an in-house SAS c© procedure called PROC
BENCHMARKING. Interested persons should write to Susie.Fortier@statcan.ca for more
information.

The examples in this section were obtained by running test versions of the programs that
were made available to us prior to the conference.

3The diagonal elements of the matrix C can be re-scaled to avoid numerical problems. For example,
they can be divided by their overall mean.

4Define ρ0 = 1. Also, for ρ = 0, the matrix Ωe is the Identity matrix.
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5.1 PROC BENCHMARKING

The following statements read a seasonal quarterly time series into a SAS dataset called
mySeries, and the corresponding annual benchmarks into a SAS dataset called myBench-
marks.

DATA mySeries;

INPUT @01 year 4.

@06 period 1.

@08 value;

CARDS;

1998 1 1.9

1998 2 2.4

1998 3 3.1

1998 4 2.2

1999 1 2.0

1999 2 2.6

1999 3 3.4

1999 4 2.4

2000 1 2.3

(... more data);

RUN;

DATA myBenchmarks;

INPUT @01 startYear 4.

@06 startPeriod 1.

@08 endYear 4.

@13 endPeriod 1.

@15 value;

CARDS;

1998 1 1998 4 10.3

1999 1 1999 4 10.2

(... more data);

RUN;

The following PROC BENCHMARKING step performs benchmarking by selecting the
suggested default values λ = 1, ρ = 0.729 = 0.93 and with estimation of the bias pa-
rameter according to Equation (2). The benchmarked series is stored in the SAS dataset
called outSeries5.

PROC BENCHMARKING

BENCHMARKS=myBenchmarks SERIES=mySeries

OUTBENCHMARKS=outBenchmarks OUTSERIES=outSeries

RHO=0.729 LAMBDA=1 BIASOPTION=3;

RUN;

5The OUTBENCHMARKS option stores the benchmarks that were actually used by the procedure.
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The same statements but with BIASOPTION = 1 calculate the benchmarked series
without bias estimation. The resulting benchmarked series are displayed in Figure 1. The
Benchmarked to Indicator ratios (BI-ratios) are displayed in Figure 2. The step-function
represents the BI-ratios corresponding to pro-rating. The main difference in the the BI-
ratios with and without bias estimation is at the end with years without benchmarks
where the BI-ratios converge to 1 without bias estimation and to the estimated bias value
b = 0.964 when bias estimation is applied.

Finally, Figure 3 displays the BI-ratios with bias estimation, λ = 1 and various values of
the parameter ρ. When the value of ρ increases to 1, the series of BI-ratios is smoother;
conversely, when the value of ρ is close to 0, the BI-ratios converge faster to the estimated
bias value (0.964 in this case). This figure also illustrates that the suggested default value
of ρ = 0.93 is a good compromise between smoothing and fast convergence of the BI-ratios
at the end of the series.

5.2 X-12-ARIMA FORCE spec

A multiplicative monthly seasonal adjustment is to be performed using automatic outlier
identification and ARIMA forecast extension on the Canadian Department Stores Retail
Trade Series6. Trading-day and Easter adjustment factors are computed from the regres-
sion spec. The annual totals of the seasonally adjusted series will be forced to equal the
totals in the calendar adjusted series with the regression-based method. The suggested
default values7 are hard-coded in the FORCE spec. The parameters are set to lambda= 1
to smooth the ratios (instead of the differences) in the annual totals. The value rho=0.9
ensures that the BI-ratios in the incomplete years will converge to 1, which is defined as
the theoretical value for the ratio of the calendar year total of the calendar adjusted raw
series over that of the seasonally adjusted series.

series{... save=a18}

transform{function=log}

regression{ variables=(TD easter[8])}

outlier{ ...}

arima{...}

forecast{...}

x11{... save=d11}

force{

lambda=1

rho=0.9

target=calendaradj

type=regress

save=saa }

6Trade Group 170
7The usefcst argument was added to the FORCE spec after the conference. With default value yes,

it determines if forecasts are appended to the series.
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Figure 4 displays the seasonally adjusted series (D11) and the corrected seasonally ad-
justed series (D11A). In this case the indicator series is the seasonally adjusted series
and the benchmarks are the annual totals of the calendar adjusted raw series. Not that
much can be said from that figure; so, the differences in the two series are displayed
in Figure 5, where one can clearly see the effect of the smoothing parameter rho=0.9.
Figure 6 displays the growth rates in the seasonally adjusted series before and after the
FORCE spec. Clearly, benchmarking did not affect the growth rates in any noticeable
way, which was expected given the differences displayed in Figure 5.

Finally, as discussed earlier, Figure 7 shows that the FORCE spec implies that the calen-
dar year totals in the seasonally adjusted series are made equal to those of the calendar
adjusted raw series. Annual total starting at any other period other than January are
not at all equal, and so, contrary to popular belief, benchmarking a seasonally adjusted
series to annual totals via the methodology implemented in the FORCE spec does not
produce a seasonally adjusted series with constant seasonal factors.

6 Guidelines

The following guidelines are mainly based on Chen and Wu (2003).

When using the FORCE spec of X-12-ARIMA:

1. Use lambda= 0 for an additive decomposition model and lambda= 1 for a multi-
plicative decomposition model.

2. Use rho= 0.9 for monthly time series or rho=0.729 for quarterly series.

3. Avoid using type=denton or type=regress with rho= 1. In general, benchmarked
values in incomplete years are less accurate, and the program involves the inversion
of a much larger matrix. Consequently, users are to expect a significant increase in
computing time when using rho= 1.

4. An alternative to using rho= 1 is thus to use rho= 0.999.

The following two guidelines do not apply to X-12-ARIMA.

1. If there are indications that the true autocorrelation of the error is very strong, say
ρ > 0.95, then use rho= 0.98.

2. If possible, use a reasonable method to estimate the autocorrelation structure of
the error instead of using the above default values. There will be a gain in accuracy
for years without benchmarks. A method is provided in Chen and Wu (2001).
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7 Methodological Details

The benchmarked series in Equations (3) and (4) are obtained as the solution of the
following minimization problem. For given parameters λ and ρ, and re-scaled series s†t ,
find the value θ̂t that minimize the following function of θt :

f (θ1, . . . , θT ) =
(

1 − ρ2
)

(

s†
1
− θ1

|s†
1
|λ

)2

+
T
∑

t=2

[(

s†t − θt

|s†t |
λ

)

− ρ

(

s†t−1
− θt−1

|s†t−1
|λ

)]2

(5)

under the constraints
t2,m
∑

t=t1,m

θt = am, m = 1, . . . ,M. (6)

Some motivation might be needed to justify the choice of the function to be minimized.
First, consider the case where λ = 0 and ρ = 1. Then, the function to be minimized
under the constraints (6) becomes

f (θ1, . . . , θT ) =
T
∑

t=2

[(

s†t − θt

)

−
(

s†t−1
− θt−1

)]2

=
T
∑

t=2

[(

s†t − s†t−1

)

− (θt − θt−1)
]2

,

which aims at preserving the period to period changes in the original series. That is
the criterion of Denton (1971) modified by Cholette (1984), called the modified Denton
method8.

Next, consider the case where the re-scaled series is made of positive numbers, λ = 1,
and ρ = 1. Then, the function to be minimized under the constraints (6) becomes

f (θ1, . . . , θT ) =
T
∑

t=2

[(

s†t − θt

s†t

)

−

(

s†t−1
− θt−1

s†t−1

)]2

=
T
∑

t=2

[

θt

s†t
−

θt−1

s†t−1

]2

which, contrary to popular belief, does not preserve the period-to-period growth rates,
but, as explained in Bloem, Dippelsman, and Mæhel (2001), is a variant of the propor-
tional Denton criterion that seeks to minimize the change in the benchmarking revision
ratios θt/s

†
t (BI-ratios).

Next, consider the case where the re-scaled series is made of positive numbers, λ = 1/2,
and ρ = 0. Then, the function to be minimized under the constraints (6) becomes

f (θ1, . . . , θT ) =
T
∑

t=1





s†t − θt
√

s†t





2

,

8Originally, Denton puts 1 instead of (1 − ρ2) as the coefficient for the first term in (5).
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with solution

θ̂t = s†t

(

am
∑t2,m

t=t1,m
s†t

)

, t1,m ≤ t ≤ t2,m.

This is the well-known formula for pro-rating. When λ = 0 and ρ = 0, the function to be
minimized under the constraints (6) becomes

f (θ1, . . . , θT ) =
T
∑

t=1

(

s†t − θt

)2

,

with solution

θ̂t = s†t +
1

t2,m − t1,m + 1



am −

t2,m
∑

t=t1,m

s†t



 , t1,m ≤ t ≤ t2,m.

Obviously, in all those special cases, the solution can be computed directly from Equa-
tions (3) and (4) with the appropriate values for the parameters λ and ρ.

Figure 3 illustrates how the ratios of the benchmarks to the corresponding totals in the
indicator series (the step function corresponding to pro-rating) are smoothed with differ-
ent values of the parameter ρ. Applying the ratios from pro-rating (without smoothing)
creates the so-called step-problem between years. The growth rate from the last quarter
of a year to the first quarter of the next year in the benchmarked series takes all the
effect due to the new benchmark. The variant of the proportional Denton method is
obtained with ρ = 1. Apart from smoothing the step function, an undesirable feature of
this method is that it repeats the last BI-ratio for the observations without a benchmark
at the end of the series. For observations without a benchmark, the best estimate of the
BI-ratio is the estimated value of the bias; so, repeating the last value is not appropriate.
However, to obtain a smooth transition from this last BI-ratio to the bias, one need to
have a smooth transition or convergence. This is obtained by having the parameter ρ < 1.
Clearly, setting ρ < 1 produces BI-ratios that converge to the bias parameter at the end
of the series. However, for observations with a benchmark, the BI-ratios are closer to
those obtained with the proportional Denton method (ρ = 1) and smoother when ρ → 1.

We now give the derivation of Equation (3), which we reproduce from Quenneville, Cho-
lette, Huot, Chiu, and Di Fonzo (2005). The function (5) to be minimized is proportional

to Ω
−1/2

e C−1
(

s† − θ
)

. Minimizing this function subject to Jθ = a entails minimizing the
function

(

s† − θ
)′

(CΩeC)−1
(

s† − θ
)

+ 2ν ′ (Jθ − a)

with respect to the element of θ and ν, where 2ν is the vector of Lagrange multipliers.
Differentiation with respect to these elements leads to the equations

(CΩeC)−1
(

s† − θ
)

= J ′ν (7)

Jθ = a.

From Equation (7), θ = s† − CΩeCJ ′ν, and consequently, Jθ = Js† − JCΩeCJ ′ν = a.
It follows that ν = − (JCΩeCJ ′)−1

(

a − Js†
)

, and so θ̂ from Equation (3) follows with
Ve = CΩeC and Vd = JVeJ

′.
9



8 Future Developments

An implied regression model for benchmarking: The benchmarked series can be
computed assuming the following implied regression benchmarking model made of the
two linear equations like in Cholette and Dagum (1994). The model is:

s† = θ + e; E(e) = 0, Cov(e) = Ve, (8)

a = Jθ + ε; E(ε) = 0, Cov(ε) = Vε, (9)

with e and ε uncorrelated; and where θ is a constant9 vector and is regarded as parameters
in this regression model.

For further reference, re-write the model defined by Equations (8) and (9) as a standard
linear model of the form y = Xθ + u where

y =

(

s†

a

)

, X =

(

I
J

)

, u =

(

e
ε

)

(10)

and define the covariance matrix of u as

V =

(

Ve 0
0 Vε

)

. (11)

In X-12-ARIMA FORCE spec, the matrix Vε is set to 0, the matrix Ve is specified by the
choice of the parameter λ and ρ, and the benchmarked values are computed according
to Equations (3) or (4). Note that with these choices for the matrices Ve and Vε, the
“regression model” defined by Equations (8) and (9) is just a way to perform the numer-
ical computations for the minimization of Equation (5) under the constraints defined by
Equation (6).

A few generalizations are needed outside the scope of X-12-ARIMA FORCE spec. They
are going to be implemented in a future version of PROC BENCHMARKING.

Measurement errors from the infra-annual series: A first generalization is to
consider that Ve = CΩeC where C is a diagonal matrix with the standard deviation of
the measurement errors, s†t − θt, on its main diagonal, and that Ωe is the auto-covariance
matrix of the corresponding standardized errors (having variance equal to 1). For exam-
ple, if the errors e have constant coefficients of variation (relative variance), say cv = 1%,
then C = cv × diag(|s†t |) represents the standard errors, and Ve = CΩeC represents
the covariance matrix of e. In fact, Ωe can be used to represent the autocorrelation of
any stationary ARMA process with unit variance, not just AR(1). Then, Ωe has a more
complicated structure then that we mentioned under Equation (3).

Measurement errors from the benchmarks: A typical application of benchmarking
at Statistics Canada involves cases where the benchmarks themselves are subject to errors.
Such benchmarks are called non-binding. In this case, the matrix Vε in Equation (9) is
different from the zero matrix.

9See Durbin and Quenneville (1997) and the references therein for the case where θ is a random
vector.
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Let ε = (ε1, . . . , εM)′ be the vector of measurement errors associated with the bench-
marks, and Vε represents its covariance matrix. Then the covariance matrix of the annual
discrepancies a − Js† is Vd = JVeJ

′ + Vε.

Write Ve = σ2

eCΩeC, and correspondingly Vε = σ2

ε Ωε. Then only the ratio σ2

ε /σ
2

e will be
needed in the benchmarking formulae. For this it will be sufficient to define Ve = CΩeC
and Vd = JVeJ

′ + (σ2

ε /σ
2

e) Ωε in Equation (3). So, it is only when the ratio σ2

ε /σ
2

e is very
close to zero that the measurement errors in the benchmarks can be ignored in Vd.

Variance estimation of the benchmarked values: Let Ve and Vε be known error
covariance matrices for e and ε, and assume for now that both are positive definite. That
is, let Ve = E

(

s† − θ
) (

s† − θ
)′

and similarly for Vε. Then θ̂ is provided by10

θ̂ =
(

X ′V −1X
)−1

X ′V −1y

= s† + VeJ
′ (JVeJ

′ + Vε)
−1
(

a − Js†
)

(13)

and
Vθ̂ =

(

X ′V −1X
)−1

= Ve − VeJ
′ (JVeJ

′ + Vε)
−1

JVe (14)

is the error covariance matrix of θ̂, that is E
(

θ̂ − θ
)(

θ̂ − θ
)′

.

Note that when Vε = 0 (binding benchmarks), Equation (13) is consistent with Equa-
tion (3). Note also that Equation (14) holds only if Ve and Vε are made of known constants.
In a case such as using Ve = CΩeC with C = cv × diag(|s†t |), the matrix Ve is only an
estimate of the true covariance matrix, then Equation (14) is only an estimate of the true
Vθ̂.

Binding benchmarking with benchmarks subject to measurement errors: Due
to a variety of reasons, the benchmarked values can always be calculated by putting
Vε = 0, i.e. to use the binding benchmarking formulae (3), even when the benchmarks are
non-binding. Denote the benchmarked values using the binding benchmarking formulae
by θ̂0, then the error covariance matrix is:

Cov
(

θ̂0 − θ
)

=
[

I − VeJ
′ (JVeJ

′)
−1

J
]

Ve

[

I − J ′ (JVeJ
′)
−1

JVe

]

+
(

J ′V −1

ε J
)−1

. (15)

We are now going to derive Equations (15). For the regression model y = Xθ +u defined
by Equation (10), if instead of V ,

Vδ =

(

Ve 0
0 δVε

)

is the covariance matrix of u, then the generalized least squares estimate of θ is

θ̂δ =
(

X ′V −1

δ X
)−1

X ′V −1

δ y (16)

= s† + VeJ
′ (JVeJ

′ + δVε)
−1
(

a − Js†
)

. (17)

10To arrive to the displayed expressions, the following matrix inversion formulae must be used:

(A−1 + BC−1B′)−1 = A − AB(B′AB + C)−1B′A. (12)
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However, only θ̂1 is the correct result of the non-binding benchmarking; θ̂0 is the result
of using the binding benchmarking formulae.

For any δ > 0 consider,

θ̂δ − θ =
(

X ′V −1

δ X
)−1

X ′V −1

δ (Xθ + u) − θ

=
(

X ′V −1

δ X
)−1

X ′V −1

δ u.

Since Cov(u) = V1 = V ,

Cov
(

θ̂δ − θ
)

=
(

X ′V −1

δ X
)−1

X ′V −1

δ V V −1

δ X
(

X ′V −1

δ X
)−1

. (18)

We wish to calculate Cov
(

θ̂δ − θ
)

when δ → 0. For this, consider

X ′V −1

δ X = V −1

e + J ′(δVε)
−1J

and
X ′V −1

δ = (V −1

e , J ′(δVε)
−1).

Then

(

X ′V −1

δ X
)−1

X ′V −1

δ =
[

(

V −1

e + J ′(δVε)
−1J
)−1

V −1

e ,
(

V −1

e + J ′(δVε)
−1J
)−1

J ′(δVε)
−1

]

.

The first term on the right hand side of this equation simplifies to

I − VeJ
′ (JVeJ

′ + δVε)
−1

J

using the matrix inversion formulae (12), and the second term simplifies to

[

δV −1

e + J ′V −1

ε J
]−1

J ′V −1

ε .

When δ → 0,

(

X ′V −1

δ X
)−1

X ′V −1

δ →
[

I − VeJ
′ (JVeJ

′)
−1

J,
(

J ′V −1

ε J
)−1

J ′V −1

ε

]

.

Substitution of this result into Equation (18) gives the final result (15).

9 Conclusions

This paper presented recent developments in benchmarking at Statistics Canada that led
to the new X-12-ARIMA FORCE spec and Statistics Canada c©SAS procedure PROC
BENCHMARKING. In top of presenting the methodological details behind those two
computer programs, the paper presented guidelines and ideas for future developments.
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Figure 1: Benchmarked quarterly series with and without bias estimation with λ = 1 and
ρ = 0.729. The horizontal lines display the values of the annual benchmarks divided by
4 to re-scale them to the level of the quarterly series.

Figure 2: Benchmarked to Indicator ratios with and without bias estimation for λ = 1
and ρ = 0.729. The horizontal line at 0.964 represents the estimated bias value.
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Figure 3: Benchmarked to Indicator ratios with bias estimation for λ = 1 and various
values of ρ.

Figure 4: Canadian Department Stores Retail Trade Sales: seasonally adjusted series
(D11) and corrected seasonally adjusted series (D11A) to match the annual totals in the
calendar adjusted raw series.
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Figure 5: Canadian Department Stores Retail Trade Sales: differences between D11 and
D11A.

Figure 6: Canadian Department Stores Retail Trade Sales: Growth rates before and after
the X-12-ARIMA FORCE spec.
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Figure 7: Canadian Department Stores Retail Trade Sales: monthly differences in the
running 12-month sums in D11A and the calendar adjusted raw series (A18).
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