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Seasonality and unobserved components
models: an overview

Andrew Harvey
Faculty of Economics, Cambridge University

December 4, 2006

Abstract

This paper presents an overview of the way in which unobserved
components models deal with seasonality and seasonal adjustment.
Topics covered include the basic structural model, calendar e¤ects,
tests, daily and weekly observations, time-varying splines, robust sea-
sonal adjustment and seasonal speci�c (periodic) models.
KEYWORDS: Basic structural model, calendar e¤ects, state space

form, stationarity tests, time-varying splines, weekly observations.
JEL CLASSIFICATION: C22

1 Introduction

Seasonal adjustment is an exercise in signal extraction. Hence an unobserved
components model is a natural starting point. The fundamental reason for
building a time series model is that it provides a way of weighting the data
that is determined by the properties of the time series.
The basic structural model (BSM) is

yt = �t + t + "t; t = 1; :::; T (1)

where �t is a stochastic trend, t is a stochastic seasonal component; see
Akaike (1980) and Harvey (1989). The irregular component, "t, is assumed
to be random, and the disturbances in all three components are taken to be
mutually and serially uncorrelated. The model may be extended by including
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explanatory variables other stochastic components, such as cycles. Models
of this kind can be used for forecasting and nowcasting as well as signal ex-
traction; see Harvey (2006). The menu-driven STAMP package of Koopman
et al (2006) enables many of the methods described here to be implemented.

2 Dummy variable and trigonometric seasonal
models

2.1 Deterministic seasonality

A basic requirement of a seasonal component is that when the seasonal e¤ects
are �xed, they should sum to zero over a year. Thus if j; j = 1; ::; s; is the
seasonal e¤ect in season j;

s

�
j=1
j = 0 (2)

The restriction is easily imposed by de�ning the seasonal e¤ect at time t as

t =
s�1
�
j=1
jzjt; t = 1; :::; T

where for t = i; i+ s; i+ 2s; :::; and i = 1; :::; s� 1; the variable zjt is one for
j = i and zero for j 6= i, while for t = s; 2s; 3s::; zjt = �1 for j = 1; :::; s� 1:
In other words t is equal to j in season j and �

Ps�1
j=1 j in season s: The

restriction also means that the seasonal e¤ects over the past s periods sum
to zero, that is

s�1
�
j=0
t�j = 0; t = 1; :::; T (3)

Rather than using a set of dummy variables, a �xed seasonal pattern
may be captured by a set of trigonometric terms at the seasonal frequencies,
�j = 2�j=s; j = 1; :::; [s=2] : The seasonal e¤ect at time t is then

t =
[s=2]

�
j=1

�
�j cos�jt+ �j sin�jt

�
; t = 1; :::; T (4)

When s is even, the sine term for j = s=2 disappears and so the number
of trigonometric parameters, the �j�s and �j�s, is always s � 1; the same
as the number of coe¢ cients in the seasonal dummy formulation. The �rst
frequency, �1 = 2�=s; corresponds to a period of twelve months and is known
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as the fundamental frequency while the remaining frequencies are harmonics.
By using standard trigonometric identies, it is straightforward to show that
the seasonal e¤ects over a year sum to zero, as in (3). Provided that the
full set of trigonometric terms is included, (4) is equivalent to the dummy
variable speci�cation and the estimated seasonal patterns will be identical.

2.2 Stochastic dummies

By introducing a disturbance term into the right-hand side of (3), the seasonal
e¤ects can be allowed to change over time. Thus

s�1
�
j=1
t�j = !t or t = �

s�1
�
j=1
t�j + !t (5)

where !t is white noise with mean zero and variance �2!. The bigger the
value of �2! relative to the variances of other disturbances in the model, the
more rapidly the seasonal pattern changes over time and the more rapidly
are past observations discounted in constructing a seasonal pattern for the
forecast function. The forecasts satisfy the recursion

~T+ljT = �
s�1
�
j=1
~T+l�jjT ; l = 1; 2; ::: (6)

where the starting values are given by the (smoothed) estimates of the sea-
sonal e¤ects, T ; ::T�s+2, at time T . Thus the seasonal pattern projected
into the future is �xed and the seasonal e¤ects sum to zero over any period
of one year.

An alternative way of allowing the seasonal dummy variables to change
over time is to suppose that the e¤ect of each season evolves as a random
walk. This model was introduced by Harrison and Stevens (1976, pp. 217-
18). Let jt denote the e¤ect of season j at time t. Then

jt = j;t�1 + !jt; j = 1; :::; s; t = 1; :::; T (7)

where !jt is a white-noise disturbance term with mean zero and variance
�2!: Although all s seasonal components are continually evolving, only one
a¤ects the observation at any particular point in time, that is t = jt for
t = 1; :::; T; when season j is prevailing at time t: The requirement that the
seasonal e¤ects in the forecast function sum to zero over s consecutive time
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periods is enforced by the restriction that, at any particular point in time,
the seasonal components, and hence the disturbances, sum to zero, that is

s

�
j=1
jt = 0 =

s

�
j=1
!jt; t = 1; :::; T (8)

This restriction is implemented by the correlation structure in

V ar (!t) = �2!
�
I� s�1ii0

�
; t = 1; :::; T (9)

where !t = (!1t; :::; !st)
0 ; coupled with an initial condition requiring that the

seasonals sum to zero at t = 0: It can be seen from (9) that V ar (i0!t) = 0;
so i0!t = 0:
The relationship between the two forms of dummy variable seasonality is

examined in Proietti (2000). In practice, it is usually preferable to work with
the balanced dummy variable seasonal model of (7) though the simplicity of
the single shock model of (5) can be useful for pedagogic purposes.

2.3 Trigonometric seasonality

A trigonometric seasonal pattern may be allowed to evolve over time by writ-
ing the component at each frequency as a recursion and adding disturbances.
Thus

t =
[s=2]

�
j=1

jt; t = 1; :::; T (10)

and

jt = j;t�1 cos�j + �j;t�1 sin�j + !jt
�jt = �j;t�1 sin�j + �j;t�1 cos�j + !�jt

�
; j = 1; :::; [(s� 1) =2] (11)

where !jt and !�jt are zero mean white-noise processes which are uncorrelated
with each other and have a common variance �2j for j = 1; :::; [(s� 1) =2]. The
component �jt appears as a matter of construction, and its interpretation is
not particularly important. When s is even,

s=2;t = s=2;t�1 cos�s=2 + !s=2;t = (�1)ts=2;t�1 + !s=2;t: (12)

The estimators of the jT�s and 
�
jT 0s provide starting values for a projection

of the latest seasonal pattern into the future. Hannan, Terrell and Tuckwell
(1970) constructed a seasonal model by letting �j and �j in (4) evolve as
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random walks, but it can be shown that this speci�cation is equivalent to
the one described above.
Assigning di¤erent variances to each harmonic allows them to evolve at

varying rates. However, from a practical point of view it is usually desirable
to let these variances be the same. Thus

V ar (!jt) = V ar
�
!�jt
�
= �2j = �2!; j = 1; :::; [(s� 1) =2] (13)

though for s even,

V ar
�
!s=2;t

�
= �2!=2; t = 1; :::; T (14)

As a rule, very little is lost in terms of goodness of �t by imposing this
restriction. The model is identical to the balanced dummy variable seasonal
model with �2! = 2�2!=s for s even and �

2
! = 2�2!= (s� 1) for s odd; see

Proietti (2000).
Note that the reduced form of the balanced dummy and trigonometric

seasonal models is such that
Ps�1

j=0 t�j = S(L)t is an MA(s� 2) process.

2.4 Daily e¤ects

If some of the seasonal e¤ects are assumed to be the same, the number of
dummy variables can be reduced. Since this assumption is particularly rele-
vant for modelling daily e¤ects, it will be described in this context. However,
the notation is completely general.
Let w be the number of di¤erent types of day in a week and let kj be

the number of days of the j-th type for j = 1; :::; w: Thus, for example, if
all weekdays are alike but both Saturdays and Sundays are di¤erent, w = 3;
k1 = 5 and k2 = k3 = 1: The e¤ect associated with the j-th type of day is
�jt; where

�jt = �j;t�1 + �jt; j = 1; :::; w (15)

the disturbance term �jt having zero mean and variance

V ar
�
�jt
�
= �2�

�
1� k2j=k

�
; j = 1; :::; w (16)

where
k =

w

�
j=1
k2j
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The covariances between the disturbances are

E
�
�jt�ht

�
= ��2�kjkh=k; j 6= h; j; h = 1; :::; w (17)

If k and �t are w� 1 vectors with j-th elements kj and �jt respectively, the
covariance matrix can be written as

V ar (�t) = �2�
�
I� k�1kk0

�
; t = 1; :::; T: (18)

If all the seasons are assumed to be di¤erent, the balanced seasonal model
of (7) is obtained; in that case w = s and kj = 1 for j = 1; :::; s. As in that
model, the speci�cation of the covariance matrix of the disturbances ensures
that the daily e¤ects sum to zero over a week since V ar (k0�t) = 0 and so
k0�t = 0:
Although the daily e¤ects are changing every day, only one of them a¤ects

the observations at a particular point in time. Thus if the day at time t is of
the j � th type, the daily e¤ect is

�t = �jt; t = 1; :::; T:

2.5 State space form

Putting the daily model in state space form is easy. The transition equation
can be written in matrix terms as

�t = �t�1 + �t (19)

where �t is a w � 1 vector containing the daily e¤ects and �t is the cor-
responding vector of disturbances with covariance matrix (18). The only
complication is that the zt vector in the measurement equation changes over
time so that each day it picks out the appropriate daily e¤ect from �t:
One of the �0jts may be dropped from the model as it can be reconstructed

from the requirement that, at any particular point in time, the sum of the
daily e¤ects over a week should be zero. This enables the number of elements
in the state vector to be reduced by one. If, without loss of generality, the
w-th type of day is dropped then

�wt = �k�1w
w�1
�
j=1

kj�jt (20)
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For the w-th type of day the j-th element in zt is equal to �kj=kw for j =
1; :::; w� 1: For all other types of day there is unity in the j-th position and
zeroes elsewhere. However, it is not necessary to drop an element from the
state vector in order to enforce the zero sum restriction since (18) combined
with an initial di¤use covariance matrix of the form

E (�0�
0
0) = �2�

�
I� k�1kk0

�
;

with �2� !1; will ensure that it holds.
The balanced dummy seasonal model is put into SSF in the same way,

with the simpli�cation that k = i: The trigonometric model has a state vector
which, for s even, is given by (1t; 

�
1t; :::; (s=2)t)

0: The transition matrix has
a block diagonal structure while the covariance matrix of the disturbances is
diagonal.

3 Basic structural model

3.1 Stationary form

A stochastic trend component is made stationary by applying the �rst di¤er-
ence operator twice, that is �2�t = ��t + �t�1: The seasonal component is
made stationary by the seasonal summation operator. Thus the stationary
form of the BSM, (1), is obtained by multiplying through by the �rst and
seasonal di¤erence operators and taking note of the identity �s = �:S (L) :
With the single shock dummy variable seasonal component S (L) t = !t and
so

��syt = �s�t + S (L) �t�1 +�
2!t +��s"t (21)

The right hand side is an MA(s + 1) process since it is the sum of four
MA processes, the maximum order of which is s + 1. The BSM with a
trigonometric seasonal component is also such that ��syt is MA(s+1); for
quarterly data

��4yt = �4�t + S(L)�t�1 +�
2 (1 + L) (!1t + !�1t) (22)

+�2
�
1 + L2

�
!2t +��4"t

When the seasonal component depends on only one variance parameter,
the unrestricted reduced form contains more parameters than the structural
form, namely s+ 2 as opposed to four.
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When the slope is deterministic, equal to � in all time periods, the ob-
servations are rendered stationary by the seasonal di¤erence operator. For a
quarterly trigonometric seasonal model

�4yt = � + S(L)�t +�(1 + L) (!1t + !�1t) + �
�
1 + L2

�
!2t +�4"t: (23)

The autocovariance function of the quarterly BSM with a trigonometric
seasonal component can be derived from the stationary form, (22), and is

 (0) = 2�2� + 4�
2
� + 8�

2
1 + 14�

2
2 + 4�

2
"

 (1) = 3�2� � 2�21 � 12�22 � 2�2"
 (2) = 2�2� � 4�21 + 8�22
 (3) = �2� + 2�

2
1 � 4�22 + �2" � = 3; :::; s� 2

 (4) = ��2� + �22 � 2�2"
 (5) = �2"
 (�) = 0; � > 6

9>>>>>>>>=>>>>>>>>;
Imposing the constraint that �22 = �21=2 leads to some simpli�cation and
establishes that  (2) and  (3) are both non-negative. When the slope is
deterministic, the ACF may be similarly obtained from (23).
The corresponding ACFs with single shock seasonal dummies are more

easily obtained and are left as an exercise for the reader.

3.2 Seasonal ARIMA models

For modelling seasonal data, Box and Jenkins (1976, ch. 9) proposed a class
of multiplicative seasonal ARIMAmodels. The most important model within
this class has subsequently become known as the �airline model�since it was
originally �tted to a monthly series on UK airline passenger totals. The
model is written as

��syt = (1 + �L) (1 + �Ls) �t (24)

where �s = 1 � Ls is the seasonal di¤erence operator and � and � are MA
parameters which, if the model is to be invertible, must have modulus less
than one. Box and Jenkins (1976, pp. 305-6) gave a rationale for the airline
model in terms of EWMAs at monthly and yearly intervals.
Maravall (1985), compares the autocorrelation functions of ��syt for the

BSM and airline model for some typical values of the parameters and �nds
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them to be quite similar, particularly when the seasonal MA parameter, �,
is close to minus one. In fact in the limiting case when � is equal to minus
one, the airline model is equivalent to a BSM in which �2� and �

2
! are both

zero. It is straightforward to see that this is true from the stationary form
of the BSM given in (21): removing the terms in !t and �t gives

��syt = �s�t +��s"t = (1� Ls) (�t + "t � "t�1)

and the last term in parentheses is an MA(1). The airline model thus pro-
vides a good approximation to the reduced form when the slope and seasonal
are close to being deterministic. If this is not the case the implicit link be-
tween the variability of the slope and that of the seasonal component may
be limiting.
The plausibility of other multiplicative seasonal ARIMA models can, to

a certain extent, be judged according to whether they allow a canonical
decomposition into trend and seasonal components; see Hillmer and Tiao
(1982). Although a number of models fall into this category the case for
using them is unconvincing. It is hardly surprising that most procedures for
ARIMA model-based seasonal adjustment are based on the airline model.
Pure AR models can be very poor at dealing with seasonality since sea-

sonal patterns typically change rather slowly and this may necessitate the
use of long seasonal lags. A slowly changing seasonal pattern shows up in
the airline model when � is close to minus one. Note, though, that it is
possible to combine an autoregression with a stochastic seasonal component
as in Harvey and Scott (1994).
Consumption Amodel for aggregate consumption provides a nice illustra-

tion of the way in which a simple parsimonious STM that satis�es economic
considerations can be constructed. Using UK data from 1957q3 to 1992q2,
Harvey and Scott (1994) show that a special case of the BSM consisting
of a random walk plus drift, �; and a stochastic seasonal not only �ts the
data but yields a seasonal martingale di¤erence that does little violence to
the forward-looking theory of consumption. The unsatisfactory nature of an
autoregression is illustrated in the paper by Osborn and Smith (1989) where
sixteen lags are required to model seasonal di¤erences. As regards ARIMA
models, Osborn and Smith (1989) select a special case of the airline model in
which � = 0: This contrasts with the reduced form for the structural model
which has �sct following an MA(s� 1) process (with non-zero mean). The
seasonal ARIMA model approximates the sample ACF but does not yield
forecasts satisfying a seasonal martingale, that is E[�sct+s] = s�:
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4 Trading day and calendar e¤ects

It is not unusual for the level of a monthly time series to be in�uenced
by calendar e¤ects. Such e¤ects arise because of changes in the level of
activity resulting from variations in the composition of the calendar between
years. The two main sources of calendar e¤ects are trading day variation and
moving festivals. They may both be introduced into a time series model and
estimated along with the other components in the model. Thus, for example,
the BSM is extended so as to become

yt = �t + t + � t + 't + "t (25)

where � t is the trading day variation component and 't is the moving festival
component.
Calendar e¤ects should be modelled so as not to a¤ect the level of the

trend. Thus when the forecast function is constructed, they should cancel
out under temporal aggregation in the same way as the seasonal component.
Furthermore, because they represent what are basically arti�cial movements
in the series, there is a clear case for removing them as part of the process
of seasonal adjustment.

4.1 Trading day variation

Trading day variation occurs when the activity of an industry or business
varies with the day of the week. Thus for a �ow variable, or a time-averaged
stock, the observation recorded for a particular month will depend on which
days of the week occur �ve times. Accounting and reporting practices can
also create trading day e¤ects in a time series. For example, businesses that
perform their bookkeeping on Fridays tend to report higher sales in months
with �ve Fridays than in months with four. Time series other than economic
time series may also exhibit analogous e¤ects to trading day variation. For
example, road accidents tend to be higher on Fridays and Saturdays.
The trading day component is

� t =
7

�
j=1
�jtnjt; t = 1; :::; T; (26)

where njt; j = 1; :::; 7 is the number of times day j occurs in month t and �jt
is an unknown parameter associated with it. The constraint that

7

�
j=1
�jt = 0 (27)
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ensures the trading day e¤ects are not confounded with the trend. If the �0jts
are deterministic, the sum of the trading day e¤ects for each month over a
period equal to a whole number of weeks is zero since

�
t
� t = �

t
�
j
�jnjt =

X
j

�j
X
t

njt

and
P

t njt is the same for all j: Over a year the sum of trading day e¤ects
will be almost, but not exactly, equal to zero, as 52 weeks is equal to 364
rather than 365 or 366 days.
When the trading day e¤ects are stochastic, the �jt evolve as random

walks as in the balanced dummy variable seasonal model and the constraint
in (27) is imposed by specifying the covariance matrix as in (9). One element
may be dropped from the state vector. Indeed with deterministic trading day
e¤ects this is the normal way to proceed. If the seventh day is dropped, then

� t =
6

�
j=1
�jt (njt � n7t) (28)

The trading day model may be derived from the daily e¤ects model of
(15). If di¤erent days give rise to the same e¤ect, a more parsimonious
trading day model is obtained, namely

� t =
w

�
j=1
�jtnjt; t = 1; :::; T; (29)

where there are w di¤erent types of day and the covariance matrix of the
disturbances driving the �0jts is as in (18). As before one parameter may
be removed. Summing the daily e¤ects over one month, and noting the
constraint on �wt in (20) yields

� t =
w�1
�
j=1

�jtnjt + nwt

 
�1
kw

w�1
� kj
j=1

�jt

!
=

w�1
�
j=1

�jt

�
njt �

kjnwt
kw

�
Thus, for example, if all weekdays are the same, and Saturdays and Sundays
are the same, � t contains a single variable, that is

� t = �1tfn1t � n2t (5=2)g; (30)

where n1t is the number of weekdays in the month and n2t is the number
of Saturdays and Sundays. The deterministic trading day model takes njt �
(kj=kw)nwt; j = 1; :::; w � 1; as explanatory variables.
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The deterministic version of (28) is used by Kitagawa and Gersch (1984)
and Bell and Hillmer (1983), although in the second of these references the
remaining part of the model is of the ARIMA form. Bell and Hillmer (1983)
also include the variable

nt =
7

�
j=1
njt (31)

This variable, which is the total number of days in month t; is able to account
for e¤ects due to leap year Februaries. However, if there are no leap year
e¤ects, or if the February �gure is adjusted prior to any model building, nt
becomes super�uous. An implementation of a stochastic trading day e¤ects
model can be found in Dagum, Quenneville and Sutradhar (1992).
The trading day model is not satisfactory in all respects. For example, if

a particular activity is only carried out on weekdays, it would seem sensible
to divide the monthly total by the number of working days before �tting a
model. (It may also be multiplied by the average number of working days
per month, although this is not important in the present context.) The
result will not be the same as using the trading day models given above.
Suppose that we amend (30) somewhat, so that it becomes � t = �n1t: If the
structural model is in levels, there is no way that de�ning � t in this way can
be equivalent to dividing yt by n1: This is the case even if yt is in logarithms,
because there is no value of � that makes exp (�n1t) equal to unity for all n1l:
Another problem is the e¤ect of public holidays on modelling trading day

variation. A public holiday could be treated as an eighth day of the week and
given its own e¤ect, or it could be treated as a Sunday. There may, however,
be other e¤ects arising from public holidays. For example, if a holiday falls
on a Friday, the usual Friday e¤ect may be transferred to a Thursday.

4.2 Moving festivals

The month in which certain holidays and religious festivals fall can vary from
year to year. A prime example is Easter, which can fall anywhere from 22
March to 25 April. In connection with retail sales, Bell and Hillmer (1983)
suggest modelling Easter as

't = �ht (32)

where ht is the proportion of the time period H days before Easter that falls
in month t: This model can be de�ned for any positive H and if H 6 22
the only months for which ht will ever be non-zero are March and April. A
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similar model could be used for road and air tra¢ c except that in this case
the time period up to and including Easter Monday might be the relevant
one. The value of H would probably be four or �ve.
As it stands, (32) does not have the property that the 't�s sum to zero

over a year. Fortunately this is easily remedied. In addition, the form of the
moving festival component may be generalised. Suppose that 't is modelling
any moving festival e¤ect, not necessarily Easter, and that ht is now a weight
given to month t: Let the sum of the ht�s over any one year be unity. The
pattern of the ht�s depends on the location of the moving festival in question
and its postulated e¤ect on the surrounding days. Thus, for example, the
weight pattern for a series on road accidents might be derived by assigning
initial weights of 1

3
; 1
6
; 1
6
and 1

3
to the days from Good Friday to Easter Mon-

day. If Easter Monday were 1 April in a particular year, this would imply
that ht for March would be 23 ; while for April it would be

1
3
: A moving festival

may now be formulated as

't = �(ht � 1=s); (33)

where s is twelve unless the timing interval is lunar months, in which case it
is thirteen.
Further generalisation is possible. The parameter � may be allowed to

change over time by modelling it as a random walk. The weight function, ht;
then appears in the corresponding position in the zt vector in the measure-
ment equation.
A �nal issue, which is relevant to both trading day variation and moving

festivals, concerns model selection. If there is reason to suspect calendar
e¤ects are present, they should be included in the model at the outset. If a
model is �tted without calendar e¤ects, then signi�cant Box-Ljung or other
serial correlation statistics may be an indication that seasonal e¤ects are
present. Speci�c tests for calendar e¤ects are discussed in sub-section 5.4
below.
As with outliers, calendar e¤ects can distort the correlogram of the orig-

inal (di¤erenced) series. This is illustrated by Hillmer (1982, p. 388) using
a series on the monthly outward station movements (disconnections) of the
Wisconsin telephone company from January 1951 to October 1966. An ear-
lier analysis of ths series, using standard ARIMA methodology, had been
carried out by Thompson and Tiao (1971). They had obtained the model�

1� 0:49L3
� �
1� 1:005L12

�
yt =

�
1� 0:23L9 � 0:33L12 � 0:17L13

�
�t
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After allowing for trading day variation, Hillmer selected the airline model.

5 Tests

5.1 Seasonal stationarity tests

The basic form of the LBI test against nonstationary stochastic seasonality
is obtained for the model

yt = �+ t + "t; t = 1; :::; T (34)

where � is a constant. The test against the presence of a stochastic trigono-
metric component at any one of the seasonal frequencies, �j; apart from the
one at �; is based on the statistic

!j = 2T
�2b��2 TX

t=1

24 tX
i=1

ei cos�ji

!2
+

 
tX
i=1

ei sin�ji

!235 ; j = 1; :::; [(s�1)=2];

(35)
where b�2 is the sample variance of the OLS residuals, et; t = 1; ::; T; from a
regression on the seasonal sines and cosines, zt; and a constant. Following
Canova and Hansen (1995), it can be shown that, under the null hypothesis,
the asymptotic distribution of this statistic is generalized Cramér-von Mises
with two degrees of freedom. If s is even, the statistic at frequency � is

!s=2 = T�2b��2 TX
t=1

 
tX
i=1

ei(�1)i
!2

;

and this has an asymptotic distribution which is Cramér-von Mises with one
degree of freedom. A joint test against the presence of stochastic trigono-
metric components at all seasonal frequencies is obtained by summing the
individual test statistics, that is

! =

[s=2]X
j=1

!j (36)

This statistic has an asymptotic distribution which is generalized Cramér-
von Mises with s � 1 degrees of freedom, denoted CvM(s � 1). Canova
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and Hansen (1995) point out that the same test is obtained if the stochastic
seasonal component is of the balanced dummy variable form.
Canova and Hansen show how the above tests can be generalized to handle

serial correlation and heteroscedasticity by making a nonparametric correc-
tion. However, if the process generating the non-seasonal part of the model
is taken as given, the LBI test against stochastic seasonality is constructed
from a set of �smoothing errors�. As shown in Busetti and Harvey (2003,
Appendix B) the smoothing errors are, in general, serially correlated but the
form of this serial correlation may be deduced from the speci�cation of the
model, thereby allowing the construction of a statistic that has a Cramér-von
Mises distribution, asymptotically, under the null hypothesis. An alternative
possibility is to use the T standardized one-step ahead prediction errors, the
innovations, calculated by treating nonstationary and deterministic compo-
nents as having �xed initial conditions. No correction is then needed; the
statistic is of the form (35) and has the same asymptotic distribution. Calcu-
lating innovations under the assumption that the initial conditions are �xed
requires that the initial conditions be estimated, but a backward smoothing
recursions can be avoided simply by reversing the order of the observations
and calculating a set of innovations starting from the �ltered estimator of the
state at the end of the sample. Actually, the forward and backward innova-
tions are not the same and in neither case do the sums, weighted by cos�jt
and sin�jt; equal zero, so statistics formed from forward and backward sums
are di¤erent. Fortunately the asymptotic properties are una¤ected. Smooth-
ing errors do not su¤er from these ambiguities.
For both the smoothing error and innovation forms of the test, nuisance

parameters will normally have to be estimated. For stationarity tests, Ley-
bourne and McCabe (1994) argue that this is best done under the alternative
using maximum likelihood. Proceeding in this way has the compensating
advantage that since there will often be some doubt about a suitable model
speci�cation, estimation of the unrestricted model a¤ords the opportunity to
check its suitability by the usual diagnostics and goodness of �t tests. Once
the nuisance parameters have been estimated, the test statistic is calculated
from the innovations obtained with �2! set to zero.
The parametric test may be applied in models which include a determinis-

tic trend, a random walk with or without a drift, or a trend with a stochastic
slope. In all these cases the asymptotic distribution of the test statistics is
una¤ected.
We will refer to these tests as seasonal stationarity tests. The nonpara-
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metric statistics will be denoted !(m); where m is the number of lags in the
estimator of the spectrum.

5.2 Seasonality test

Seasonal stationarity tests take the null to be deterministic seasonality. Some-
times we may wish to test whether there is any seasonality at all. Busetti
and Harvey (2003) suggest two possible tests. Both can be implemented
parametrically or nonparametrically.
1) A Wald test of the null hypothesis that the deterministic seasonal

coe¢ cients are zero.
2) A seasonal stationarity test without �tting seasonal dummies. Such

a test will have also have power against deterministic, as well as stochas-
tic, seasonality. If the test statistic, !0; is formed without �tting seasonal
dummies, its asymptotic distribution under the null will be a function of
Brownian motion rather than of a Brownian bridge, that is CvM0(s � 1).
The 5% critical value for three degrees of freedom, as is appropriate for a full
test on quarterly data, is 3.46.
Spanish interest rates As an example we consider the logarithm of 3-

month money market interest rate in Spain for the period 1977Q1-2001Q4;
the source is the Bank of International Settlements (BIS) macroeconomic
series database. The series is depicted in the upper panel of �gure 1. It
is di¢ cult to detect a seasonal pattern from a casual glance at the graph
and one would not normally expect one to be present in an interest rate
series; however the functioning of the interbank loans market may imply
some seasonality.
Fitting the BSM to the series gives a seasonal component as shown in

the lower panel of �gure 1; the slope variance is estimated to be zero and
the estimate of the (�xed) slope is small and insigni�cant. We have used
logarithms of the data only because the diagnostics are better; if the raw
series is used, the resulting seasonal pattern is similar.
The chi-square statistic for the seasonals at the end of the series is only

0.09 which is clearly not signi�cant as the 5% critical value for a �23 is 7.81.
However the graph shows a fairly strong seasonal pattern until the mid-
eighties. The question is whether the pattern as a whole is in any sense
signi�cant.
Setting the seasonal variance to zero and re-estimating the BSM gives a

Wald statistic of 4.76, with a p-value of 0.19. This is still not signi�cant. If
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Figure 1: Spanish interest rates

the series is di¤erenced and a nonparametric Wald test is computed using the
Newey-West covariance matrix estimator with three lags a similar p-value,
0.17, is obtained. On the other hand, the spectral nonparametric seasonal
stationarity test statistic, !0(m); computed using forward summations takes
the values 3.83 and 3.01 for m = 3 and 6 respectively, rising to 4.64 and 3.89
for !�0(m); the preferred form in which the spectrum is estimated after �tting
seasonal regressors. As the 5% critical value is 3.46, this test provides a �rm
rejection of the hypothesis that there is no seasonality in the series.
Finally, for m = 3 and 6 the seasonal stationarity test statistic, !(m),

takes the values 1.17 and 1.02 respectively (against a 5% critical value of
1.00), thereby con�rming the presence of stochastic seasonality.

5.3 Seasonal unit root tests

The test of Hylleberg et al. (1990) - HEGY- is testing the null of a nonsta-
tionary seasonal against the alternative of a stationary seasonal. Its relation-
ship to the seasonal stationarity test is analogous to that of the relationship
between the (augmented) Dickey-Fuller test and KPSS.
The UC seasonal unit root test can be set up by introducing a damping

factor into (11) so that each trigonometric term in the seasonal component
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is modelled by24 j;t

�j;t

35 = �j

24 cos�j sin�j

� sin�j cos�j

3524 j;t�1

�j;t�1

35+
24 !j;t

!�j;t

35 ; j = 1; : : : ; [s=2];

t = 1; : : : ; T:
(37)

with �s=2;t dropping out for s even. The seasonal component, obtained by
summing the 0j;ts is then embedded in a general UCmodel which contains de-
terministic seasonal trigonometric terms. However, since the forecasts would
gradually die down to zero for �j < 1, such a seasonal component is not cap-
turing any (non-deterministic) persistent e¤ects of seasonality. In any case
the empirical evidence, for example in Canova and Hansen (1995), clearly
points to seasonal unit roots as the norm. Nevertheless we may still wish
to test the null hypothesis of seasonal unit roots against the alternative of
stationary seasonality.
A parametric test of the null hypothesis that the component at a partic-

ular frequency is nonstationary against the alternative that it is stationary,
that is H0 : �j = 1 against H1 : �j < 1; can be constructed from the null
hypothesis innovations as

!j = 2T
�2

TX
i=1

24 iX
t=1

e�t cos�jt!2 + iX
t=1

e�t sin�jt!2
35 < c; j = 1; :::; [(s�1)=2]:

(38)
Under the null hypothesis the asymptotic distribution is CvM0(2) since if
the nonstationary seasonal operator, 1� 2cos�jL+L2, were to be applied it
would remove the corresponding deterministic seasonal. For j = s=2

!s=2 = T�2
TX
i=1

 
iX
t=1

e�t cos �t!2 = T�2
TX
i=1

 
iX
t=1

(�1)te�t!2
and this has a CvM0(1) asymptotic distribution under the null. The full
seasonal test statistic is formed by summing the !0js and its asymptotic dis-
tribution under the null is CvM0(s�1). With seasonal slopes the asymptotic
distributions are CvM1(:); compare Smith and Taylor (1998).
Seasonality tests based on an autoregressive model will tend to perform

poorly in situations where an unobserved components model is appropriate.
The simulation evidence in Hylleberg (1995) illustrates this point by looking
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at the results of using the HEGY test for moving average models, which, as
Harvey and Scott (1994) note, typically arise as the reduced form of unob-
served components models.
A rejection of the null hypothesis in a seasonal unit root test may be an

indication of a deterministic seasonal component rather than a stationary
seasonal component; see the evidence in Canova and Hansen (1995, p 244).
Following the argument in Harvey and Streibel (1998), it can be shown that
the appropriate test of the null of deterministic seasonality against the alter-
native of near-persistent stationary seasonality, that is (37) with the �j close
to one, is, in fact, the seasonal stationarity test. Therefore we may only want
to do a test against stationary seasonality if the hypothesis of deterministic
seasonality has �rst been rejected by the seasonal stationarity test.

5.4 Testing for trading day e¤ects

Cleveland and Devlin (1980) showed that peaks at certain frequencies in the
estimated spectra of monthly time series indicate the presence of trading day
e¤ects. Speci�cally there is a peak at a frequency of 0.348�2� radians, with
the possibility of subsidiary peaks at 0.432�2� and 0.304�2� radians. An
option in the output of the X-12-ARIMA program provides a comparison of
the estimates of these frequencies with the adjacent frequencies; see Soukup
and Findley (2000). However, there is no formal test. Busetti and Harvey
(2003) suggest a seasonality test at the relevant frequency or a joint test at
all three frequencies. Assuming that no (deterministic) trading day model
has been �tted, the asymptotic distribution is CvM0; as in sub-section 5.2,
with the 5% critical value being 2.63 for a test at a single frequency and 5.68
for a test at all three frequencies.
As an example we took the irregular component, obtained from X12-

ARIMA, of series s0b56ym, U.S. Retail Sales of Children�s, Family, and
Miscellaneous Apparel, as supplied by the Bureau of the Census. Since the
process followed by this irregular component cannot be derived, it was de-
cided to use the nonparametric test. The !(10) test statistic for the single
main frequency was 7.03. For all three frequencies it was 8.21. Both give a
clear rejection of the null hypothesis that there is no trading day e¤ect.
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6 Seasonal adjustment

Once a STM has been �tted, the seasonally adjusted series is obtained by
signal extraction using the Kalman �lter and associated smoother (KFS).
E¢ cient algorithms are described in Durbin and Koopman (2001, pp. 70-
73). The KFS automatically adjusts the weighting pattern to give optimal
(MMSE) estimates at the ends of the series. The KFS is much easier to
implement than the Wiener-Kolmogorov (WK) �lter and is more general1 -
for example it can be used with models that are not time invariant. Unlike
WK, the weights are implicit, but they can be calculated by the algorithm
of Koopman and Harvey (2003). Figure 2 shows weights for the model �t-
ted to the logarithms of gas consumption by �Other �nal users in the UK�
as displayed by STAMP 7. The weights for the seasonally adjusted series
are 1 � ws(L) where ws(L) is the polynomial of weights for extracting the
seasonal. The gain shows the e¤ect of the �lter on a stationary series. The
gain of the seasonal adjustment �lter is one minus the gain of the seasonal
�lter. This is zero at � and �=2 in order to remove the non-stationary sto-
chastic seasonal component: the pseudo-spectrum of the seasonal at those
frequencies is in�nity.
Figure 3 shows the weights at the end of the series. In this case there is

a phase shift.

7 Breaks in the seasonal pattern

The seasonal pattern sometimes changes as the result of an intervention.
Modelling an e¤ect of this kind requires the introduction of s � 1 dummy
variables into the measurement equation, starting at time � : These dummies
are constrained to sum to zero over s consecutive time periods. alternatively
pulse dummies can be added to the part of the state vector associated with
the seasonal, that is t: As an example, �gure 4 shows the number of mar-
riages in the UK every quarter. Estimating (1) with a random walk trend

1In the second edition of his celebrated text describing the WK �lter, Whittle (1984, p
xi) writes �In its preoccupation with the stationary case and generating function methods,
the 1963 text essentially missed the fruitful concept of state structure. This ..... has now
come to dominate the subject.�Nevertheless WK formulae can give interesting theoretical
insights into the weighting structure of smoothed estimators and as such provide the basis
for excellent examination questions.
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Figure 2: Weights for quarterly gas series in the middle of the sample.
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Figure 3: Weights for quarterly gas series at the end of the sample.
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Figure 4: UK marriages and plot of seasonal for each quarter

using the STAMP program gives

e� " = 0:00 e� � = 1:61 e�! = 2:69
with an equation standard error (the standard deviation of the innovations),e�; of 7:91. The lower panel in �gure 4, the plot of individual seasons, displays
a dramatic switch between the �rst and second quarters starting in 1969.
Indeed the parametric seasonal stationarity test statistic, constructed from
the Kalman �lter innovations, is 6.96 which is a very decisive rejection of the
null hypothesis of a constant seasonal pattern. The reason is that there was
a change in the tax law. Up to the end of 1968 couples were allowed to claim
the married persons tax allowance retrospectively for the entire year in which
they married. As the tax year begins in April this arrangement provided an
incentive to marry in the �rst quarter of the calendar year, rather than in
the spring. The abolition of this rule led to a marked decrease in the number
of weddings in quarter one and a compensating rise in quarter two.
Adding a set of three seasonal break dummy variables2, starting in the

�rst quarter of 1969, to take account of a complete change in the seasonal

2Actually it is only necessary to have a single switch dummy for q1 and q2 to capture
the change.
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pattern leads to the following estimates of the parameters:

e� " = 2:42 e� � = 1:59 e� ! = 1:36
with

Q(9; 7) = 12:54 and e� = 5:66
where Q(P; f) is the Box-Ljung statistic based on P residual autocorrela-
tions but with f degrees of freedom. The t�statistics for the seasonal break
dummies are -8.33, 7.58 and 2.09 respectively. There is a big reduction in
the estimate of the seasonal parameter, � !; which no longer needs to be such
as to allow the stochastic seasonal model to accommodate the change, and
the equation standard error, e�; has fallen considerably.
When a full set of seasonal break dummy variables is included in the model

the distibution of the seasonal stationarity test statistic is CvM(2s � 2):
The parametric test statistic, calculated from the Kalman �lter innovations,
is 2:42; giving a strong indication that there is still stochastic seasonality
present. This is backed up by the fact that estimating the model with a �xed
seasonal gives a signi�cant Box-Ljung statistic of Q(9; 8) = 22:38 while the
fourth order residual autocorrelation, r(4); is 0:33.
If the breakpoint is unknown Busetti and Harvey (2003) show that run-

ning the seasonal break tests with an estimated breakpoint leads to an as-
ymptotically valid procedure.

8 Time-varying periodic splines

With quarterly or monthly observations it is rarely necessary or desirable to
cut down on the number of terms used to model the seasonal pattern. On
the other hand, when s is large, as for example with weekly data, there are
both statistical and computational reasons for wanting to constuct a more
parsimonious seasonal model.
The dimensions of the dummy variable seasonal model can be reduced

by assuming that certain seasons are the same, as in the daily model of
sub-section 2.4. However, while this may be suitable for daily observations,
it is generally inappropriate for a pattern within the year. Similarly, the
trigonometric seasonal model can be straightforwardly cut down by exclud-
ing pairs of sines and cosines at certain frequencies, usually the higher ones,
but while this may be a sensible option for a slowly changing seasonal e¤ect,
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such as temperature, it may not be satisfactory for modelling economic vari-
ables, where there are often sharp peaks at certain times of the year. What is
needed is a model that is parsimonious but �exible enough to capture marked
variations in a periodic pattern while retaining a reasonable degree of con-
tinuity. This leads to the notion of periodic time-varying splines. These
are described, with applications to weekly and intra-daily observations, in
Harvey, Koopman and Riani (1996) and Harvey and Koopman (1993).
The �rst step in obtaining a time-varying periodic spline is to show how

spline models in general, and periodic splines in particular, can be set up
in a regression. Following Harvey and Koopman (1993), time variation is
introduced in the usual way by allowing the parameters to follow stochastic
processes.
Piecewise regression using cubic splines Suppose there are n pairs

of observations (xj; yj) ; j = 1; :::; n; and that we wish to set up a nonlinear
regression model of the form

yj = f (xj) + "j; j = 1; :::; n; (39)

where the "j�s are mutually uncorrelated disturbances with zero mean and
constant variance, �2. In a cubic spline regression model, f (xj) is constructed
by putting together polynomials of degree at most three in such a way as to
preserve continuity in second derivatives. The h individual cubics are joined
at the co-ordinates

�
xyi ; 

y
i

�
; i = 0; :::; h: The set of x values, xy0 < xy1 < � � � <

xyh; is known as a mesh; the h + 1 � 3 individual points are called knots.
The setup is completed by making assumptions about the spline at its end
points.
Given the knots and the associated values of the ordinates, xy0; :::; x

y
h; it

can be shown that any point on the spline function is a linear combination
of the yi�s. Thus at the observation points, we can write

f (xj) = w
0
j

y; j = 1; :::; n; (40)

where wj is an (h+ 1)� 1 vector that depends on the position of the knots
and the distance between them, as well as on the observed value xj, and

y =
�
y0; 

y
1; :::; 

y
n

�0
. If xj corresponds to a knot, xj = xyi ; then all the

elements in wj are zero, apart from the ith which is unity, and f (xj) = yi :
Substituting (40) in (39) gives the cubic spline regression model

yj = w
0
j

y + "j; j = 1; :::; n (41)
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Given the assumptions on "j;y is estimated by ordinary least squares.
Periodic splines Now suppose that the explanatory variable is time and

that there is a pattern repeated over a stretch of s observations, so that we
have s periodic e¤ects j; j = 1; :::; s: These e¤ects can be modelled by a
spline of the form (40), in which n = s; xj = j and continuity from one
period to the next is preserved by the condition that

y0 = yh (42)

together with the conditions that the �rst and second derivatives at 0 and
h are the same. This removes the need for further assumptions about the
end conditions. The implications for the wj vectors, which are now h � 1;
corresponding to y1; :::; 

y
h; are easily worked out. Full details can be found in

Poirier (1976, pp. 43-47) and Harvey, Koopman and Riani (1997, appendix).
The periodic spline is therefore

j = w
0
j

y; j = 1; :::; s; (43)

where y is h� 1:
As with any seasonal component, the periodic e¤ects should sum to zero

over a complete period so as not to be confounded with the trend. Thus

s

�
j=1
j =

s

�
j=1
w0
j

y = w0y = 0; (44)

where w is the h� 1 vector
w =

s

�
j=1
wj: (45)

The restriction can be enforced by arbitrarily dropping one of the elements
of y: If yh is dropped, then substituting

yh = �
h�1
�
i=1
(wi=wh) 

y
i ; (46)

where wi is the i�th element of w; in (43) gives

j =
h�1
�
i=1
(wji � wjhwi=wh) 

y
i ; j = 1; :::; s; (47)

where wji is the ith element of the vector wj:
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Time-varying e¤ects When the periodic e¤ects evolve over time, (43)
becomes

t = jt = w
0
j

y
t ; j = 1; :::; s; t = 1; :::; T; (2.15)

where jt is the jth periodic e¤ect at time t and

yt= 
y
t�1+!

y
t ; (2.16)

where !yt is an h � 1 vector of serially uncorrelated random disturbances
each with mean zero. The zero-sum constraint, w0yt = 0; is as in (44),
and the implied constraint on the disturbances, w0!yt = 0; is re�ected in the
covariance matrix

E
�
!yt!

y0
t

�
= �2!

�
I� 1

w0w
ww0

�
(48)

because V ar(w0!yt) = 0:
The above covariance matrix is of the same form as (18) in the daily

model. As in that model, an element can be dropped from yt : If the h� th is
dropped, t can be obtained from the �rst h�1 elements of the vector 

y
t and

the state space form is set up with a component of the form (47) featuring in
the measurement equation. However, as was pointed out in sub-section 2.6,
the constraint can be enforced without dropping an element by combining
(48) with a corresponding di¤use initial covariance matrix.

9 Robust seasonal adjustment

Simulation techniques of the kind of the kind described in Durbin and Koop-
man (2001) are relatively easy to use when the measurement and transition
equations are linear but the disturbances are non-Gaussian. Allowing the
disturbances to have heavy-tailed distributions provides a robust method of
dealing with outliers and structural breaks. While outliers and breaks can be
dealt with ex post by dummy variables, only a robust model o¤ers a viable
solution to coping with them in the future.
Allowing "t to have a heavy-tailed distribution, such as Student�s t; pro-

vides a robust method of dealing with outliers. An outlier is de�ned as an
observation that is inconsistent with the model. By employing a heavy-tailed
distribution, such observations are consistent with the model whereas with
a Gaussian distribution they would not be. Treating an outlier as though it
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were a missing observation e¤ectively says that it contains no useful informa-
tion. This is rarely the case except, perhaps, when an observation has been
recorded incorrectly.
Gas consumption in the UK Estimating a Gaussian BSM for gas con-

sumption produces a rather unappealing wobble in the seasonal component
at the time North Sea gas was introduced in 1970. Durbin and Koopman
(2001, p 233-5) allow the irregular to follow a t-distribution and estimate its
degrees of freedom to be 13. The robust treatment of the atypical obser-
vations in 1970 produces a more satisfactory seasonal pattern around that
time.
Another example of the application of robust methods is the seasonal

adjustment paper of Bruce and Jurke (1996).
In small samples it may prove di¢ cult to estimate the degrees of freedom

of a t-distribution. A reasonable solution then is to impose a value, such as
six, that is able to handle outliers. Other heavy tailed distributions may also
be used; Durbin and Koopman (2001, p 184) suggest mixtures of normals
and the general error distribution. De Rossi and Harvey (2006) e¤ectively
assume a double exponential distribution in their algorithm for estimating a
time-varying median.
Heavy tailed distributions may also be used to provide models that are

robust to breaks in the trend or seasonal.

10 Seasonal speci�c models

Periodic models were originally introduced to deal with certain problems in
environmental science, such as modelling river �ows; see Hipel and McLeod
(1994, ch. 14). The key feature of such models is that separate stationary
AR or ARMA model are constructed for each season. Econometricians have
developed periodic models further to allow for nonstationarity within each
season and constraints across the parameters in di¤erent seasons; see the
monograph by Franses and Papp (2004). These approaches are very much
within the autoregressive/ARIMA paradigm. The structural framework of-
fers a more general way of capturing periodic features by allowing periodic
components to be combined with components common to all seasons. These
common components may exhibit seasonal heteroscedasticity, that is have
di¤erent values for the parameters in di¤erent seasons. Such models have
a clear interpretation and make explicit the distinction between an evolving
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seasonal pattern of the kind typically used in a structural time series model
and genuine periodic e¤ects.
The �rst sub-section below introduces seasonal heteroscedasticity and we

then move on to de�ne periodic models. The relationship between nonsta-
tionary periodic models and STMs is then examined and it is concluded that
the large number of parameters in periodic models means that there have to
be strong reasons for wanting to use them. The third sub-section introduces
partly periodic models, in which some or all of the components are periodic
with respect only to groups of seasons. These may be handled within a state
space framework and generalised further to include seasonal heteroscedastic-
ity. Overall we have a class of what might be called seasonal speci�c models.

10.1 Seasonal heteroscedasticity

If the variance hyperparameters in a STM are di¤erent in di¤erent seasons,
the model is said to exhibit seasonal heteroscedasticity (SH). Such models
are not time-invariant but this poses no problem if they are handled using
the SSF.
Irregular - The simplest example of SH is when the irregular component

has a di¤erent variance in each season, that is

V ar
�
"
(j)
t

�
= �2";j; t = 1; :::; T; j = 1; ::; s (49)

Proietti (1998) gives an example involving monthly water usage. The trend
is modelled as a random walk plus drift while the seasonal ends up being
deterministic even though allowance was made for it being stochastic. The
seasonal heteroscedasticity is not part of the seasonal component since it
re�ects the transitory e¤ects which are more volatile at certain times of the
year. For example, unusually hot weather in the summer can give rise to
much higher water consumption than would normally be expected.
Another example of seasonal heteroscedasticity is the level of activity in

the construction industry in countries such as the USA where the occasional
severe winter leads to a much higher variance in the winter quarter.
Trend - It is possible that there is more scope for a permanent change

in a series at certain times of the year. E¤ects of this kind could be allowed
for by letting the level and slope variances be seasonal speci�c. They do not
belong in the seasonal component since they do not give rise to a seasonal
pattern in the forecast function.
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Seasonal - The seasonal component itself may be subject to seasonal
speci�c e¤ects insofar as the way in which it evolves depends on the time
of year. The time series of Italian industrial production provides a good
example. The series is typically very low in August due to holidays and
it is also very variable. One possibility is to increase the variance of the
irregular component in August. However, Proietti (1998) argues that the
variability arises because the seasonal e¤ect associated with August changes
at a faster rate than the seasonal e¤ect associated with other months. In
order to capture this kind of phenomenon, he generalizes the (balanced)
dummy variable seasonal model. The covariance matrix of the disturbances
becomes

V ar (!t) =W� 1

i0sWis
Wisi

0

sW (50)

where W is a diagonal matrix with �2!;j; j = 1; ::; s; as the j�th diagonal
term. (Note that at least two variances must be non-zero if W is to be
non-null.) Since V ar

�
i
0
s!t
�
= 0; the seasonals sum to zero over a year. The

above covariance matrix reduces to that in (9) if �2!;j = �2! for all j = 1; ::; s:
In the case of Italian industrial production, Proietti sets all �2!;j�s the same
except for August, �2!;8:
Cycle - cyclical component may exhibit di¤erent properties in di¤erent

seasons. E¤ects of this kind may be captured in a stochastic cycle, not only
by having the disturbance variances di¤er across seasons but also by letting
the frequency,�c; and damping factor, �, be season speci�c.

10.2 Periodic models

A classic example of the need for a periodic model arises in hydrology when
there are monthly observations on river �ow. If melting snow is an important
factor in river �ow in the spring, the correlation between the �ow in succes-
sive months may be negative whereas at other times of the year it is positive.
These features show up in the periodic autocorrelation functions, as illus-
trated in Hipel and McLeod (1994, p504-5). The autocorrelation function
for period (season) j is

�j(�) = Cov(y
(j)
t ; yt�� )=

q
V ar(y

(j)
t )V ar(yt�� ); j = 1; ::; s;

where the superscript in y(j)t indicates that the time t is in period j:
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The periodic ARMA model can be written as:

yt = �j + u
(j)
t ; t = 1; :::T; j = 1; ::; s; (51)

where the mean in season j; �j; is constant over di¤erent years and u
(j)
t

follows a stationary ARMA (pj; qj) process, that is

u
(j)
t = �j;1ut�1 + ::+ �j;put�p + �

(j)
t + �j;1�t�1 + :::+ �j;q�t�q;

with V ar
�
�
(j)
t

�
= �2j ; j = 1; ::; s:

The above model is denoted as PARMA (p1; q1; p2; q2; :::; ps; qs). Most at-
tention has been focussed on the periodic ARmodel, denoted PAR (p1; :::; ps).
In the simple �rst-order case

y
(j)
t = �j + �j

�
yt�1 � �j�1

�
+ "

(j)
t ; V ar

�
"
(j)
t

�
= �2j ; j = 1; ::; s (52)

For economic time series, the model needs to be able to capture a long-
term trend. This can be done by allowing the u(j)t �s to be nonstationary.
Osborn (1988) �ts a model of the form (52) to UK consumption. She imposes
the constraint

s

�
j=1
�j = 1; (53)

so the model has s seasonal and nonseasonal unit roots with a reduced form
such that �syt �MA (s� 1) : However, she reports that the model exhibits
some residual serial correlation and so is not entirely satisfactory. Harvey
and Scott (1994 p.1331-2) argue that this periodic model is overelaborate
and unconvincing. They show that a similar �t to U.K. consumption data
can be obtained by a non-periodic model consisting of a random walk and a
stochastic seasonal. This structural model also has a reduced form in which
�syt �MA (s� 1) but it is much more parsimonious, with only two parame-
ters. It has a straightforward statistical interpretation and is consistent with
the rational expectations-permanent income hypothesis of economic theory.
It is important to note that di¤erent acf�s for di¤erent seasons are not nec-

essarily evidence for a periodic model. They can, for example, be produced
by seasonally heteroscedastic models; see Proietti (1998 p9).
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10.3 Relationship between periodic models and trend
plus seasonal models

Sensible application of non-stationary periodic models requires that their
relationship to models with stochastic trends and seasonals be properly un-
derstood. The �rst step is set up a periodic generalisation of the local level
model:

yt = �
(j)
t + "

(j)
t ; t = 1; :::; T; (54)

where V ar("(j)t ) = �2";j; as in (49), and

�
(j)
t = �

(j)
t�1 + �

(j)
t ; V ar(�

(j)
t ) = �2�;j; j = 1; :::; s: (55)

The model is equivalent to a PARIMA(0; 1; 1; 0; 1; 1; ::::::; 0; 1; 1) model. If
it were generalised so that

�
(j)
t = �j�t�1 + �

(j)
t ; V ar(�

(j)
t ) = �2�;j; j = 1; :::; s; (56)

and the irregular dropped, then (52) would be a special case. However,
a slight di¤erence will be introduced with respect to conventional periodic
models in that the levels in (55) are assumed to evolve in all time periods,
not just in the one in which they directly a¤ect the observations.
The periodic local level model in (54) contains 2s hyperparameters. This

may be contrasted with a three parameter structural model consisting of a
random walk trend, a seasonal and irregular. The question is whether the
former contains the latter as a special case.
A single level can be constructed as the average of the individual levels,

that is
�t = (1=s)i

0�t; (57)

where �t contains the s level components, �
(j)
t ; j = 1; :::; s: The seasonals are

then de�ned as deviations from this average, that is

t = �t � i�t = �t � (1=s)ii0�t; (58)

and so
t = t�1 + !t; !t = �t � (1=s)ii0�t; (59)

where �t = (�
(1)
t ; :::; �

(s)
t )

0: Thus

yt = �t + t + "t; t = 1; :::; T (60)
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where in a type j period, t = jt and "t = "
(j)
t : If the �

20
�;js in (54) are all

the same, and denoted as �2!;then V ar(!t) is as in (9). The variance of the
disturbance driving the level, �t, is �

2
!=s: This restriction, that is tying the

level variance to that of the seasonals, can be removed if by introducing a
disturbance in the levels common to all seasons, that is

�
(j)
t = �

(j)
t�1+ �t+ �

(j)
t ; V ar(�t) = �2�; V ar(�

(j)
t ) = �2�;j; j = 1; :::; s;

(61)
where �t and the �

(j)0
t s are mutually independent. The vector of levels then

becomes

�t = �t�1 + i�t + �t; V ar(�t) = D = diag(�2�;1; :::; �
2
�;s) (62)

If the common level and the seasonal vector are de�ned as in (57) and (59)
above, the transition equation for the level becomes

�t = �t�1 + �t;

with �t = �t+(1=s)i
0�t: This disturbance is only independent of !t if V ar(�t)

is a scalar matrix. Setting V ar(�t)=�
2
!I gives (60) with the level variance

equal to �2�+ �2!=s: If V ar(�t) is diagonal, but not necessarily scalar,

V ar(!t) = D+ s�2ii0Dii0 � s�1ii0D� s�1Dii0

This is slightly di¤erent from the speci�cation in (50), though both have
the disturbances summing to zero over a year; in the case of the model
presented above this is by construction, though, of course, it is also true that
V ar(i0!t) = 0:
The general model consisting of (54) and (61) therefore contains both

the pure periodic and the structural model as special cases. In principle, an
LR test of V ar(�t) being scalar can be carried out quite easily, with the
test statistic being asymptotically �2s�1 under the null. A constant variance
for the irregular involves another s � 1 degrees of freedom. Overall 2s � 2
restrictions are needed to give the time invariant structural model. On the
other hand, a purely periodic model is obtained if �2� = 0: A LR test statistic
for this hypothesis has an distribution which is an even mixture of chi-squares
with zero and one degrees of freedom.
If the model is time invariant, the signal extraction �lters are (in a doubly

in�nite sample) the same in all seasons. When periodic features are present
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this is no longer the case. This has implications for seasonal adjustment using
standard procedures. On the other hand, if a model with periodic features is
handled using the SSF there is no problem. The measurement equation for
(60) is

yt = z
0
t�t + "

(j)
t ; t = 1; :::; T;

with the s� 1 vector zt having zero elements everywhere except in position
j: A decomposition into level and seasonals is then made from (57) and (58).
If MSEs are required then the model is best set up with �t and t in the
state vector. The correlation between the level and seasonal disturbances is

V ar(�t!
0
t) = V ar((�t + (1=s)i

0�t)(�t � (1=s)ii0�t)0) = s�1i0D� s�2i0Dii0

The model can easily be extended to include a slope in the trend; (62) is
replaced by

�t = �t�1 + i�t + i�t�1 + �t;

�t = �t�1 + �t

The slope is the same in all seasons and is incorporated into the equation
for �t:The model could be extended to allow for seasonal speci�c slopes if
desired; see Proietti (1998).

10.4 Partly periodic models

Having di¤erent trends in all seasons, as in (54), may be a little extreme
and it certainly requires a large number of parameters to be estimated. This
suggests a class of models which are partly periodic. There are two ways in
which this can arise. Firstly only a subset of components may be periodic.
Secondly, periodicity may apply to groups of seasons rather than to all sea-
sons. The two ideas can be combined in that only particular components
are periodic with respect to groups of seasons. The SSF allows such mod-
els to be handled because the measurement equation picks out the relevant
components at any particular point in time.
When all the components are periodic we will refer to the model as being

purely partly periodic. We begin by considering such models. Suppose there
are just two groups for which separate models are to be constructed, with s1
seasons in the �rst group and s2 in the second and s1 + s2 = s. Then

yt = �
(k)
t + 

(k)
t + "

(k)
t ; k = 1; 2; (63)
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where the seasonal, (k)t ; is modelled by a set of sk; k = 1; 2 time-varying
dummies which embody the zero sum restriction over the group. If a group
has only one season then the seasonal component is not needed. The trends
can be assumed to have slopes for more generality so that

�
(k)
t = �

(k)
t�1 + �

(k)
t�1 + �

(k)
t ; V ar(�

(k)
t ) = �2�;k; k = 1; 2:

�
(k)
t = �

(k)
t�1 + �

(k)
t ; V ar(�

(k)
t ) = �2�;k:

The overall trend is given by

�t = (s1=s)�
(1)
t + (s2=s)�

(2)
t :

This may be useful in the context of smoothing and forecasting. A seasonal
component for the model as a whole can be de�ned as

t = �
(k)
t � �t + 

(k)
t ; k = 1; 2:

In a pure partly periodic model, the disturbances in the two groups are
mutually independent. However, some correlation could be introduced be-
tween the disturbances in the trends. For example suppose � is the correlation
between �1t and �2t and between �1t and �2t: If � = 1 together with �

2
1� = �22�

and �21� = �22� , the model reduces to the seasonal heteroscedastic formulation
of (49), while if �21! = �22! as well, the BSM is obtained. (There is a constant
di¤erence between the two trends, which can be transferred to the seasonals).
Now suppose the group periodic e¤ects only apply to certain components.

At the simplest level this might mean letting the variance of the irregular
in (63) be the same in all seasons. This restriction is easily enforced by
the joint treatment of the two groups within the SSF; in fact there is one
less parameter to estimate. If a common cycle were added the model would
become

yt = �
(k)
t + 

(k)
t +  t + "t; k = 1; 2; (64)

Further generalisation might involve the introduction of seasonal heteroscedas-
ticity. This does not need to be connected in any way with the periodic
groupings.
A test of seasonal stability within a group, that is �2k! = 0; can be carried

out using a seasonal speci�c version of the seasonal stationarity test. To test
that the seasonals in the �rst group are �xed, let A be an s � (s1 � 1) full
rank matrix with each of the �rst (s1 � 1) columns containing a one and a
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minus one while the remaining elements are all zero. ThenA0yt is stationary
under the null hypothesis that �21! = 0 and the asymptotic distribution of
the test statistic is CvM(s1 � 1):
Italian industrial production Since August behaves so di¤erently to the

other months it is worth letting it have its own trend. Thus the model is as in
(63) but with slopes in the trend components and no seasonal component, as
such, for August. Other seasons may be deterministic, while August is not.
Such a feature is not possible in the seasonally heteroscedastic model of (50).
Note that the August trend is allowed to be correlated with the (common)
trend in the other seasons.
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