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Real-Time Signal Extraction: an Application of ‘Customized’
Optimization Criteria

By Marc Wildi1

Institute of Data Analysis and Process Design, University of Applied Sciences,
Winterthur and Institute for Business Cycle Research, KOF-ETH, Zurich.

The economic barometer issued by the institute of business cycle research is a typical
application of real-time signal extraction: designers (and users) of the indicator are
interested in estimating the level of the GDP growth-rate accurately towards the
sample end-point t = T and in detecting turning-points fast and reliably. Typically,
a strong prospective perspective is associated to this discipline. Traditional model-
based approaches (TRAMO/SEATS, Census X-12-ARIMA, STAMP to cite the
most renowned) rely either explicitly or implicitly on forecasts of the original time
series in order to compute real-time estimates. However, the underlying estimation
problems magnify mis-specification issues that are ignored in the methodological
framework of model-based approaches. The following paper illustrates the relevant
issues and proposes a procedure based on ‘customized criteria’ which mate the
very structure of real-time estimation problems. It is shown that the best mean-
square level approximation and the detection of turning-points in real-time are
incongruent requirements which deserve specific solutions. Empirical comparisons
for two economic indicators - the economic barometer of the KOF and the European
Sentiment Indicator (ESI) - illustrate efficiency gains obtained by the new approach
when compared to widely-used ARIMA-based approaches as well as logit-models.

Keywords: Real-time signal extraction, economic indicator, amplitude and time
shift, customized criteria.

JEL classification: C13, C53, E32

1 Introduction

Estimating trends or detecting turning-points in real-time are of great importance in
various application fields. The present work is based on common research projects of the
author with the KOF-ETH (www.kof.ethz.ch) - which is financed by the Swiss National
Science Foundation - and with a major Swiss bank.

In order to illustrate issues involved in real-time estimation problems the ‘old’ economic
barometer of the KOF is plotted together with the quarterly (Swiss) GDP growth-rate in
fig.1. The indicator is obtained by aggregating time series supposed to anticipate the eco-
nomic growth such as, for example, selected business survey data. Unfortunately, these
series are generally contaminated by noise as well as seasonal components which impair
an assessment of the immediate economic ‘state’. The latter is commonly reflected by a

1Marc Wildi, Institute of Data Analysis and Process Design, ZHW, tel. (32) 345 12 71, e-mail
wia@zhwin.ch
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Figure 1: GDP quarterly (dotted line), leading indicator (solid)

particular trend signal which is to be estimated (extracted) at the current boundary t = T .

The ‘raw’ indicator is compared to the final (smoothed) indicator in fig.22. In the middle
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Figure 2: Leading indicator (solid), unfiltered indicator (shaded)

of the sample, i.e. in t = T/2, symmetric filters can be used in order to extract the
desired trend component3. However, towards the current boundary of a finite sample,

2The time series in fig.1 is shorter because the GDP-series is not available towards the current bound-
ary. Values for 2005 are still subject to revisions and the last asserted turning-point is in spring 2004.

3Symmetric filters are not subject to time shifts so that input series and output signal are synchronized.
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symmetric filters have necessarily to be approximated by asymmetric designs. Therefore,
current estimates generally differ from the intended final signal. Very often, in practice,
current estimates are therefore revised when new data flows in. This effect is illustrated
in fig.3 where estimates obtained in real-time (solid lines) are compared to the final X-
12-ARIMA trend (dotted) in the vicinity of the last asserted turning-point of the original
GDP-series (see footnote 2). One can see that the real-time series differs noticeably from

Real Time Estimates
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Figure 3: Trend (dotted) and real-time estimates (solid lines)

the ex-post (final) signal. Obviously, identifying turning-points is a challenging exercise
because real-time estimates are noisy and delayed. In this example, one can provide em-
pirical evidence that the ex-post filter leads the GDP growth rate whereas the real-time
filter lags it. This subtle difference is often difficult to communicate to unexperienced
users which are easily mystified by graphical representations like fig.1 because the ex-post
area overwhelms the tiny but determinant current boundary.

The ‘new’ KOF economic barometer4, released in April 2006, is based on a real-time
filter which accounts specifically for the problem at hand: the mean-delay vanishes in
the pass-band and the undesirable components are strongly damped, see section 4. As a
result, turning-points are identified fast and reliably.

4See http://www.kof.ethz.ch/deutsch/konjunktur.
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2 Model-Based Approaches

2.1 ARIMA-Model Based Approach and Real-Time Estimation
Problem

Suppose the stochastic processes Yt and Xt are related by

Yt =
∑

|k|<∞
γkXt−k

where γk = γ−k is a symmetric possibly bi-infinite filter (i.e. there is no m such that
γk = 0 for all |k| > m) with real transfer function

Γ(ω) =
∑

|k|<∞
γk exp(−ikω) = γ0 + 2

∑

k>1

γk cos(kω)

and suppose we want to approximate YT given X1, ..., XT (real-time estimation problem).
Since the bi-infinite estimate YT satisfies

YT = ... + γT X0 + γT−1X1 + ... + γ0XT + γ1XT+1 + ...

a straightforward device would be to replace unknown random variables on the right-hand
side by estimates

ŶT := ... + γT X̂0 + γT−1X1 + ... + γ0XT + γ1X̂T+1 + ... (1)

(note that γT = γ−T by symmetry).

In many applications, the filter coefficients decay rapidly so that |γT+i| is ‘small’, implying
that the estimate (1) can be replaced by

ŶT = γT−1X1 + ... + γ0XT + γ1X̂T+1 + ... (2)

Traditional methods such as implemented in X-11-ARIMA (see Ladiray and Quenneville
(2001)), X-12-ARIMA (see Findley, Monsell, Bell, Otto, and Chen (1998)), TRAMO/SEATS
(see Maravall and Gomez (1994)) or in the structural model-based approach (see Harvey
(1989)) solve the above real-time estimation problem - either explicitly or implicitly5 -
by stretching Xt, t = 1, ..., T by back- and forecasts of the time series based on a time
series model for the DGP. Assume, for example, that Xt is a random-walk process. Then
X̂T+k = XT , k > 0, and 2 becomes

ŶT = γT−1X1 + ... + γ0XT + γ1X̂T+1 + γ2X̂T+2...

= γT−1X1 + ... + γ0XT + γ1XT + γ2XT ...

= γT−1X1 + ... +
∑

k≥0

γkXT

5Kalman-filtering and smoothing in the structural model-based approach does not compute forecasts
explicitly.
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For a white noise process one would obtain

ŶT = γT−1X1 + ... + γ0XT + γ1X̂T+1 + ...

= γT−1X1 + ... + γ0XT

and for ‘white noise plus constant level’ one obtains

ŶT = γT−1X1 + ... + γ0XT + γ1X̂T+1 + ...

= γT−1X1 + ... + γ0XT + γ1X + γ2X + ...

= (γT−1 + 1/T
T∑

k=1

γk)X1 + ... + (γ0 + 1/T
T∑

k=1

γk)XT

where X is the mean (level estimate) of the series. More generally, forecasts X̂T+k are
functions of past and present observations so that 2 is a particular asymmetric filter, see
Stier and Wildi (2002) and Wildi (2004) chapter 2 for details.

2.2 Methodological Limitations

Model-based approaches6 rely on common methodological principles which might lead to
problems in the context of real-time signal extraction. We here briefly summarize the
main points.

2.2.1 Estimation

Let f(X1, ...., XT |θ) denote the common density function of X1, ..., XT . This function is
determined (by model assumptions) up to a parameter-vector θ which links the model to
the data. The maximum likelihood (ML-) estimate θ̂ of θ is

arg
(

max
θ

f(X1, ...., XT |θ)
)

= arg

(
max

θ

(
T∑

t=2

ln
(
f(Xt|Xt−1, ..., X1, θ)

)
+ ln(f(X1|θ))

))
(3)

Often, in applications, ln(f(X1|θ)) is ignored and the resulting θ̂ is called a conditional
ML-estimate. The crucial point is that f(Xt|Xt−1, ..., X1, θ) is the distribution of the so
called innovation, that is the amount of new information contained in Xt which cannot be
accounted for by the past Xt−1, ..., X1. If we neglect ln(f(X1|θ) in 3, then we deduce that
ML-estimates essentially rely on (the distribution of) one-step ahead forecasting errors,
irrespective of the purpose of a particular application.

Users interested in multi-step ahead forecasts or, more generally, in a particular function
of one- and multi-step ahead forecasts, such as 2, are assigned to rely on statistics which
are not derived explicitly for their particular purpose.

6The treatment here is general i.e. it transcends the preceding ARIMA-based approach.
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2.2.2 Identification

Process-identification is guided by a priori knowledge (if available) and by statistics which
are tailored to that particular purpose. Information criteria are of the general form

Goodness of Fit + Model Complexity → min

The goodness of fit can be measured by the size of the residuals (estimated innovations)
and the complexity of the model can be accounted for by the number of estimated pa-
rameters. To illustrate this concept, the widely-used AIC-criterion is based on

ln(σ̂2) + 2
Number of Parameters

T

where σ̂2 is the mean-square one-step ahead forecasting error.

As for the estimation, the identification generally relies on one-step ahead forecasting
errors irrespective of the particular application at hand.

2.2.3 Diagnostics

In order to verify the validity of the imposed model assumptions, typically model-residuals
are analyzed. Interesting topics include stationarity (constant mean, constant variance)
and independence which, in practice, is often boiled-down to zero-autocorrelation. A
widely-used instrument in this context is the so-called Ljung-Box statistic

Qm = T (T + 2)
m∑

k=1

r2
k

T − k

where rk is the sample autocorrelation of the residuals7.

As for the preceding two model-building phases, diagnostics generally rely on one-step
ahead forecasting errors. New developments emphasizing the real-time estimation prob-
lem are provided in McElroy and Wildi (2007).

2.3 The One-Step-Ahead Perspective

Potential weaknesses associated with the above model-based approach are well known.
So for example in section 3.7 of the X-12-ARIMA reference manual (version 0.2.10) the
authors argue “The point forecasts are minimum mean squared error linear predictions
of future yt’s based on the present and past yt’s assuming that the true model is used ....
These are standard assumptions, though obviously unrealistic in practical applications.

7Often, model-based methods also check additional residual properties such as autocorrelations of
squared errors for example.
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What is more realistically hoped is that the regARIMA model will be a close enough
approximation to the true, unknown model for the results to be approximately valid”.

In order to exemplify weaknesses of the model-based approach, we here rely on a particular
example related to the KOF economic barometer. For the monthly series (business-survey
data) in fig.4, solid line, TRAMO identifies the following airline-model

(1−B)(1−B12)Xt = (1− 0.662B)(1− 0.824B12)εt (4)

after adjustments for outliers and calendar effects. As can be seen from typical diag-
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Figure 4: Series 31 (solid) and model simulation (dotted)

nostic plots in fig.5 ‘standard’ model assumptions are met: neither the autocorrelation-
nor the partial autocorrelation-function nor the Ljung/Box statistics suggest significant
departures from the null-hypothesis8. However, a realization - simulation - of the process
defined by 4 in fig.4 (dotted line) shows obvious departures from the original path9. The
artificial series is dominated by a strong trend component which is a ‘stylized fact’ of
I(2)-processes and therefore of the identified airline model. The level of the original time
series is much more ‘stationary’ because the series is bounded by construction.

The observed model mis-specifications aren’t by far exceptional. In fact, they seem to be
the rule, as can be seen in table 2 which compares models identified by three procedures

8TRAMO as well as X-12-ARIMA provide additional diagnostic tools such as heteroscedasticity or
model stability tests which did not lead to a rejection of the above model neither.

9The plotted path represents quite well the main-features of the process-dynamics so that we can
safely renounce on simulation experiments.
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Figure 5: Diagnostics airline model for series 31

for the bounded business survey data analyzed in section 3. We gather that approxima-
tions of the putative DGP by ARIMA-models can be of rather poor quality in practice
because traditional statistics - addressing estimation, identification or diagnostics - are
misleadingly conditioned by the rigid short term one-step ahead perspective imposed by
maximum-likelihood principles. The main point is that the misspecified model may per-
form well for the purpose imposed by the optimization criterion, namely one-step ahead
forecasting, but for real-time applications, relying also on multi-step ahead forecasts, per-
formances can deteriorate, as shown by our empirical examples below.

Clements and Hendry (2004) show that performances of one- and multi-step ahead fore-
casts are conflicting in the presence of model mis-specification, which is the rule in prac-
tice. Therefore, we conclude that the traditional model-based approach to real-time signal
extraction is subject to a fundamental methodological flaw susceptible to entail efficiency
in practice. The following empirical results suggest that the incurred loss in efficiency
can be quite important in applications.

Real-time signal extraction is an important prospective estimation problem whose par-
ticular structure is not explicitly addressed by methods relying on maximum likelihood
principles. A formal motivation for the latter, namely efficiency, stands with very unreal-
istic assumptions like ‘true’ DGP or large (infinite) data sets. Unfortunately, a practically

8



very relevant phenomenon, namely mis-specification, offenses these principles. As stated
in Chin, Geweke, and Miller (2000): “An unwritten rule of forecasting is that accuracy
is enhanced by forecasting directly what is of interest”. By contrast, this unwritten rule
stands with experience.

3 Customized Criteria: Level Approximation

3.1 Level-Approximation

One-sided real-time filters should not be optimized with respect to potentially misleading
one-step ahead forecasting performances. Instead, the mean-square filter error

E[(YT − ŶT )2] → min

should be minimized where YT is the signal and ŶT is the output of an optimal one-sided
filter. The mean-square distance measure emphasizes the level approximation problem.
A more general criterion will be used for the identification of turning-points in section 4.

Denote by Γ(ω) and Γ̂(ω) the transfer functions of symmetric and one-sided filters and
assume that the time series Xt is stationary. Then Wildi (2004) (chapter 5) and (2007)
(chapter 4) shows that parameters of the real-time filter can be optimized by

2π

T

T/2∑

k=−T/2

|Γ(ωk)− Γ̂(ωk)|2ITX(ωk) → min (5)

where ITX(ωk) is the periodogram of Xt and ωk = k2π/T , k = 0, ..., T/2. Briefly, the
expression in 5 is a finite sample approximation of the following integral

∫ π

−π

|Γ(ω)− Γ̂(ω)|2dH(ω) = E[(Yt − Ŷt)
2] (6)

where H(ω) is the spectral distribution of Xt. Generalizations to non-stationary inte-
grated processes are straightforward, by replacing the periodogram in 5 by a so-called
pseudo-periodogram, see Wildi (2007), chapter 610. However, these generalizations are
often unnecessary in the context of leading indicators because time series are bounded.
The resulting real-time estimation method introduced in Wildi (2004) is called direct fil-
ter approach (DFA).

One can show that the error linking the finite sample estimate 5 to the mean-square filter

10Additionally, suitable filter constraints must be imposed.
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error 6 is ‘small’. More precisely, consider the following approximations:

2π

T

T/2∑

k=−T/2

|Γ(ωk)− Γ̂(ωk)|2ITX(ωk) ≈ 2π

T

T/2∑

k=−T/2

IT∆Y (ωk) (7)

=
1

T

T∑
t=1

(Yt − Ŷt)
2 (8)

≈ E[(Yt − Ŷt)
2] (9)

where IT∆Y (ωk) is the periodogram of the filter error Yt − Ŷt. In practice, the left-hand
side of 7 is observed only. Proposition 10.16 in Wildi (2007) proves that the sample mean-
square error 8 is an asymptotically efficient estimate of the mean-square error. Proposition
10.17 implies that the approximation error in 7 - the convolution error - is of smaller
magnitude than that in 9 (superconsistency). Therefore, efficiency of the sample mean-
square estimate 8 is inherited by the left-hand side of 7. Moreover, uniformity of these
results is derived under general regularity assumptions which can be easily implemented in
practice, see section 3.5.4 in the cited literature. As a result, criterion 5 can be interpreted
as the minimization of an efficient estimate of the unknown mean-square filter error.

3.2 Empirical Results

3.2.1 KOF Economic Barometer

Users of the KOF economic barometer are interested in appraising business-cycles. Ac-
cordingly, the signal or, more precisely, the trend was defined by

Γ̃(ω) :=





1 0 ≤ |ω| ≤ π/14
π/7− |ω|

π/7− π/14
π/14 ≤ |ω| ≤ π/7

0 π/7 ≤ |ω| ≤ π

(10)

Components with duration longer than 28 months (frequency π/14) pass the filter unal-
tered whereas those shorter than 14 months (frequency π/7) are eliminated11. This paper
does not discuss the ‘correctness’ of the signal definition which is to be considered as an
exogeneous target imposed by users of the above instrument. Basically, any symmetric
transfer function can be approximated in real-time by the proposed approach.

The MA-coefficients of the filter can be obtained by inverse Fourier transform:

γ̃k =





− 1

π(π/7− π/14)

[
cos(kπ/7)− cos(kπ/14)

k2

]
k 6= 0

1

2

(
1

7
+

1

14

)
k=0

(11)

11The ‘traditional’ band-pass filter is unnecessary here because the data is informative about growth-
rates, not levels. Note that all time series involved are bounded per construction.
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It is readily verified that γ̃k = γ̃−k. In our experiments, the signal is generated by a
truncated MA(101)-filter Γ(·) defined by

γk =

{
Cγ̃k, |k| ≤ 50
0, otherwise

(12)

where C := 1/
∑

|k|≤50 γ̃k ensures that Γ(0) = 1.

In our comparisons, the above trend definition was fixed for all competing approaches:
real-time estimates of ARIMA-based methods are obtained by forecasts which are put
into 2, using symmetric filter coefficients defined in 12, and the DFA is based on 512.
The following procedures were analyzed: TRAMO as implemented in the latest TSW-
package, March 2006 (denoted by TRAMO-TSW in our tables) which can be down-
loaded from the Bank of Spain (http://www.bde.es/servicio/software/econome.htm) and
DEMETRA, version 2.04, the latest release of the EUROSTAT seasonal adjustment soft-
ware package13.
Thirty-six time series belong to the analyzed data set, spanning a time period from June
1979 to March 200614. All series were ‘linearized’ (calendar-effects and/or log-transform
and/or calendar effects) prior to processing so that model-assumptions should be satis-
fied. Automatic model-identification settings were chosen for all model-based approaches
(RSA=3 for TRAMO-TSW). Table 1 summarizes mean and median relative performances
of the model-based approaches relative to the DFA:

∑T−kY

t=kY +1(Ŷ
MBA
t − Yt)

2

∑T−kY

t=kY +1(Ŷ
DFA
t − Yt)2

(13)

where kY = 50 is such that Yt can be computed in t = kY , ..., T − kY . Out-of-sample
periods last two years during which models and filters are kept fixed (no revisions). Re-

TRAMO-TSW TRAMO-D X-12-T X-12-A
in- out- in- out- in- out- in- out-

mean 136% 146% 134% 143% 134% 144% 124% 131%
median 139% 145% 131% 136% 127% 135% 120% 128%

Table 1: Efficiency loss incurred by MBA in- and out-of-sample’

sults are obtained for samples of length 12015 (ten years of data). Numbers larger than

12Γ̂(ω) in 5 is based on a new ARMA-ZPC-filter design, see Wildi (2004), chapter 3, and (2007),
chapter 3, for details.

13The following versions are used in DEMETRA: TRAMO Nov-99, SEATS Sep-98 (the former is
denoted by TRAMO-D in our tables), X-12-ARIMA release 0.2.8. For X-12-ARIMA, we supplemented
stationary model alternatives which where unavailable in the original model-file x12a.mdl, namely (2 0
2)(1 0 1),(1 0 1)(1 0 1),(2 0 0)(0 0 0) and (2 0 0)(0 0 1).

14The data as well as a detailed description of the survey can be provided by the KOF. Requests are
to be addressed to the author at wia@zhwin.ch.

15The last four observations of the sample were dropped because of potential (small) data revisions
so that the sample length amounts to T = 318. In order to compute the symmetric filter, 50 values
are lost at the current boundary. Two additional years of data are retained for out-of-sample results so
that estimation and identification is restricted to t = 125, ..., 244 = 318− 50− 24 (time span 01.08.1989-
01.07.1999).
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one correspond to a gain obtained by the DFA. X-12-T is a hybrid procedure based on
identification by TRAMO-D and estimation by X-12-ARIMA. Model-orders identified by

Series TRAMO-TSW TRAMO-D X-12-A
1 (012)(011) (210)(011) (210)(011)
2 (210)(001) (011)(011) (201)(000)
3 (110)(000) (011)(011) (101)(101)
4 (011)(000) (011)(000) (100)(000)
5 (211)(000) (210)(100) (011)(011)
6 (011)(100) (110)(000) (202)(101)
7 (001)(000) (100)(011) (212)(011)
8 (011)(000) (011)(011) (212)(011)
9 (311)(011) (011)(011) (012)(011)
10 (311)(011) (121)(011) (212)(011)
11 (311)(011) (110)(011) (100)(100)
12 (310)(001) (011)(000) (202)(101)
13 (301)(101) (300)(011) (210)(011)
14 (011)(011) (011)(001) (202)(101)
15 (011)(101) (011)(011) (210)(011)
16 (110)(000) (110)(000) (202)(101)
17 (311)(000) (011)(011) (101)(101)
18 (011)(000) (011)(011) (011)(011)
19 (100)(000) (100)(011) (101)(101)
20 (011)(000) (011)(011) (100)(000)
21 (011)(011) (011)(011) (100)(100)
22 (100)(000) (011)(000) (100)(000)
23 (100)(100) (100)(000) (210)(011)
24 (110)(000) (010)(001) (202)(101)
25 (310)(001) (011)(011) (011)(011)
26 (013)(000) (013)(001) (202)(101)
27 (110)(100) (011)(011) (101)(101)
28 (110)(000) (110)(000) (201)(000)
29 (311)(011) (011)(011) (011)(011)
30 (012)(000) (012)(000) (202)(101)
31 (011)(100) (210)(011) (210)(011)
32 (011)(000) (011)(000) (212)(011)
33 (311)(011) (010)(011) (212)(011)
34 (311)(011) (010)(011) (011)(011)
35 (311)(011) (011)(011) (101)(101)
36 (112)(000) (112)(000) (202)(101)

Table 2: Model orders: TRAMO-TSW, TRAMO-D(EMETRA) and X-12-ARIMA, 120
observations (time span 01.08.1989-01.07.1999), Business Survey Data

the above ARIMA-approaches are summarized in table 2. Note that TRAMO-TSW and
TRAMO-D disagree in 16 cases with respect to integration orders for example. Differ-
ences with respect to X-12-ARIMA are even more striking. The observed model discrep-
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ancies illustrate that traditional identification procedures are sensitive to the way they
are implemented in practice16. This fact may be invoked to justify efforts in merging
procedures, see Monsell, Aston, and Koopman (2003).

3.2.2 FED Diffusion Indices

The same experimental design (sample length 120) is applied to a data set comprising
63 time series provided by the federal reserve bank, Philadelphia. Results in- and out-of-
sample are summarized in table 3, see Wildi (2007) for details. We infer from these results

TRAMO-TSW TRAMO-D X-12-T X-12-A
in- out- in- out- in- out- in- out-

mean 135% 161% 130% 157% 137% 177% 132% 141%
median 133% 141% 123% 128% 128% 142% 124% 128%

Table 3: Efficiency loss incurred by MBA in- and out-of-sample

that traditional model-based approaches might be subject to substantial efficiency-losses
in real-time applications if the current level of the signal imports.

We are aware that the analyzed series are ‘particular’ in the sense that they are bounded.
However, many important economic time series are bounded too by construction or/and
by elementary physical laws or/and by regulating mechanisms. Typical examples are
‘growth-rates’, which are often more interesting than absolute levels. The proposed DFA
reveals weaknesses of ARIMA-based methods in this particular practically relevant frame-
work, characterized by ‘small’ signal-to-noise ratios.

4 Customized Criteria: Turning-Points

We here assume that turning-points are defined by local extrema of a trend signal Yt

which is defined by the user17. In comparison to the preceding level-framework, a cus-
tomized criterion designed for the detection of turning-points should emphasize filter
performances specifically in the vicinity of the local extrema of Yt. Moreover, in many
important real-time applications, anticipations are less harmful than delays. Therefore, a
suitable criterion should reflect this error-asymmetry also. We here propose to generalize
the optimization criterion 5 in order to account for both problem-specific requirements.
To our knowledge, neither is accounted for explicitly by traditional model-based ap-
proaches.

16Whereas the older TRAMO-D relies more heavily on airline-models, the identification procedure of
the newer TSW-package seems to be less biased towards that particular forecasting model.

17For the KOF economic barometer, the trend defined in 10 is of interest. However, any signal reflecting
the particular purpose of an application and/or the particular intension of a user may be used.
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Assume that Yt is the output of a filter with transfer function Γ(·) and that the lo-
cal extrema of Yt import. Wildi (2004) proposes a decomposition of the squared filter
approximation error into amplitude and phase errors:

|Γ(ω)− Γ̂(ω)|2 = A(ω)2 + Â(ω)2 − 2A(ω)Â(ω) cos
(
Φ̂(ω)− Φ(ω)

)

= (A(ω)− Â(ω))2

+2A(ω)Â(ω)
[
1− cos

(
Φ̂(ω)− Φ(ω)

)]
(14)

where A(ω), Â(ω) are the amplitude functions and Φ(ω), Φ̂(ω) are the phase functions
of Γ(·) and Γ̂(·). If we assume that Γ is symmetric then Φ(ω) ≡ 0. Inserting 14 into 5
leads to

(
2π

T

T/2∑

k=−T/2

(A(ωk)− Â(ωk))
2ITX(ωk)

+
2π

T

T/2∑

k=−T/2

2A(ωk)Â(ωk)
[
1− cos

(
Φ̂(ωk)

)]
ITX(ωk)

)
→ min

The first summand is that part of the (estimated) mean-square filter error which is
attributable to the amplitude function of the real-time filter Γ̂ and the second summand
corresponds to the error attributable to the time shift (phase), see Wildi (2007), chapter
3. Consider a slightly more general criterion

2π

T

T/2∑

k=−T/2

(A(ωk)− Â(ωk))
2W (ωk)

2ITX(ωk)

+λ
2π

T

T/2∑

k=−T/2

2A(ωk)Â(ωk)
[
1− cos

(
Φ̂(ωk)− Φ(ωk)

)]

·W (ωk)
2ITX(ωk) → min (15)

For W (·) = 1 and λ = 1, the level-criterion 5 results. If λ > 1, then the time shift in
the pass-band18 is emphasized. The corresponding real-time filter would have smaller
time delays i.e. it would be faster. If W (ω) is monotonically increasing in ω, then the
amplitude function in the stop-band is emphasized. Stronger damping of undesirable
high-frequency components is related to the reliability of the real-time filter since ‘noise’
is damped more heavily.

The key idea behind criterion 15 is that one can account for speed - through λ - and
reliability - through W (ω) - separately. Optimal choices of λ and W (ω) for the detection
of turning-points are proposed in the following section. As we shall see, these clearly
differ from the best mean-square level settings (W (·) = 1 and λ = 1) which confirms
that both issues, level approximation and detection of turning-points, are incongruent
requirements.

18The pass-band is addressed only because the phase error is weighted by A(ω)Â(ω).
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4.1 Empirical Results

4.1.1 KOF Economic Barometer

The outcomes of the following three different filters are analyzed in figs.6 and 7: the L-
L-filter is based on λ = 1,W (· = 1), the L-D-filters are based on W (ω) = |1− exp(−iω)|
in 15 and either λ = 1 (no emphasize of time delay) or λ = 6 (time delay is emphasized).
The L-L-filter is the best (mean-square) level approximation of the trend for the original
data whereas the L-D-filter based on λ = 1 is the best level approximation for the differ-
enced data. The latter is of interest because turning-points are characterized by sign-flips
of Yt − Yt−1. In order to compare the various designs, results obtained in first differences
are transformed (integrated) to original levels in the figures.

L−L− and L−D−Filters
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5
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Figure 6: TP-identification: comparison of three different optimization criteria

Fig.6 illustrates that the optimal level filter (L-L-design) is not well suited for the de-
tection of turning-points because it is too noisy, recall fig.3 also. The main problem of
this particular design is the insufficient damping in the stop-band as can be seen in fig.7:
the amplitude function is larger than 0.5 in [π/2, π]. L-D-filters damp undesirable noise
much more strongly, because W (·) emphasizes stop-band issues. Therefore, real-time sig-
nals are smoother which is associated to improved reliability or, equivalently, to less false
alarms. Unfortunately, the best level approximation in differences (λ = 1) is subject to
substantial delays. However, the filter based on λ = 6 is faster, as expected. Its speed is
comparable to the L-L-filter (similar time shift functions in the pass-band) and damping
properties in the stop-band are comparable to the L-D-filter with λ = 1. These advan-
tageous features are obtained at costs of the amplitude function in the pass-band: the
observed negative bias implies worse level performances. By increasing λ we have traded
level-performance against smaller time delays. Overall, it seems that the fast L-D-filter
based on λ = 6 has inherited advantageous features of both other filter designs. A com-
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Amplitude Functions L−L and L−D−Filters
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Figure 7: Amplitude and time shift functions of the resulting real-time filters

parison of the rate of false alarms19 confirms this feeling since we register ‘only’ 9.1% for
the fast L-D-filter, which is substantially smaller than 12.4% (original L-D-) and 14.9%
(original L-L-filter) on a time span ranging from January 1984 to March 2006.

At this stage, it is important to analyze the effect of the smaller time delay on filter
performances more comprehensively. For that purpose, consider the data and the ideal
trend in first differences in fig.820. In this representation, the interesting TP’s are charac-
terized by sign-flips of the level signal: an ideal real-time filter should perfectly replicate
these flips. Therefore, level performances of the filter should be particularly good in the
vicinity of TP’s.
Two properties characterize TP’s in our representation (first differences): the signal
crosses the zero-line and its slope is extreme21. These characteristics can be accounted
for by specialized real-time turning-point filters i.e. by customized optimization criteria.
Indeed, the effect of the time delay on the filter error is proportional to the slope of the
signal (in the mean): a delay of one time unit induces an error of magnitude ≈ δ (in the
mean) if the slope of the signal is δ accordingly. Emphasizing the time delay, as we do by
increasing λ, therefore corresponds to a selective level estimation. Better performances
are obtained specifically in time periods where the slope of the signal is large (in absolute
value) which correspond to TP’s. Larger λ implicitly highlight TP’s at the cost of the
remaining time points.
In order to verify the above selectivity-effect on the time-axis we plot filter errors Yt− Ŷt

for both L-D-filters (λ = 1 and λ = 6) in fig.9. Vertical lines correspond to TP’s (ex-
trema of Yt). As can be seen, the faster L-D-filter performs better (in the mean) in the

19A false alarm is registered in t if the sign of Ŷt − Ŷt−1 does not coincide with that of Yt − Yt−1.
20Recall that both L-D-filters are optimized for performances in first differences
21The latter property is a ‘salient feature’ of many economic time series. In our opinion, large absolute

second ‘derivatives’ (second order differences) of the signal in TP’s are to some extent the expression of
market frictions.
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Differenced Series: Data and Ideal Trend
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Figure 8: First differences: signal and data

Filter Errors L−D−filters: Differenced Data
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Figure 9: First differences: filter errors L-D-filters λ = 6 (solid) vs. λ = 1

TP’s but worse ‘outside’. The tangible effects are reported in table 4, where mean-square
filter errors are computed for both filters on the whole sample and specifically in TP’s.
As expected, the original L-D-filter (λ = 1) performs better in the mean on the whole
sample because it has been optimized accordingly. However, the faster filter performs
better in the TP’s22.
By relying on the decomposition 14, the estimated mean-square filter error can be de-
composed into amplitude and time shift error contributions. Both error components are

22The difference in performance in the TP’s is significant: the t-test of the pairwise comparison is
-2.29 (independence of filter errors can be assumed in the test because time intervals between TP’s are
sufficiently large).
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λ = 6 λ = 1
TP’s only 0.0008 0.0034

All time points 0.0074 0.0055

Table 4: Filter errors in first differences: whole sample vs. TP’s only

reported in table 5. The ‘Total’-row is an estimate of the mean-square error computed in

λ = 6 λ = 1
Amplitude 0.0062 0.0023
Time shift 0.00017 0.0019

Total 0.0064 0.0042

Table 5: Filter errors in first differences: amplitude and time shift components

the frequency domain: it corresponds to the time-domain estimates in the second row of
table 4. As expected, the amplitude error component has substantially augmented by in-
creasing λ: the resulting disequilibrium between amplitude- and time-shift (mean-square)
error components reflects our disposition to trade mean-level against selective-level or,
equivalently, against time delay performances. As a result, the generalized optimization
criterion 15 assigns more weight to delays than to anticipations. Neither the latter error-
asymmetry nor the selective regard on TP’s is accounted for explicitly by traditional
approaches.

Logit-models are often claimed to mate the real-time turning-point problem better than
traditional ARIMA-based approaches. We refer to Birchenhall, Jessen, Osborn, and
Simpson (1999), Chin, Geweke, and Miller (2000), Sensier, Artis, Osborn, and Birchenhall
(2005), Estrella and Mishkin (1997) and (1998), Lamy (1997) and Filardo (2004) for
corresponding applications. The following logit-model has been identified on the basis of
a priori knowledge23 and information criteria

P (It = 1|Xt, Xt−1, ...) =
1

1 + exp
(
−c− aXt −

∑4
k=0 bkX̃t−k

) (16)

where Xt is the raw (unfiltered) leading indicator, X̃t are its first differences and It is
a dichotomic variable which is zero or one depending on the sign of Yt − Yt−1. The pa-
rameter estimates are c = 2.11, a = −1.36, b0 = 5.46, b1 = 4.40, b2 = 3.48, b3 = 4.15
and b4 = 3.90. The negative sign of a implies, for example, that the probability of an
economic expansion (upward TP) tends to increase for smaller values of Xt. The strength
of the above logit model is that inferences about TP’s explicitly rely on information in
levels as well as in first differences which is in accordance with our knowledge about the
series dynamics. Clearly, models either in levels only or in differences only perform worse.

23The boundedness of the time series implies that the probability of a TP tends to increase with the
(absolute) level. Therefore, level information should be important as confirmed by corresponding criteria.
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Although the L-D-filter with W (ω) = |1 − exp(−iω)| and λ = 6 performs quite well,
substantial improvements are still possible by strengthening the weight attributed to
undesirable high-frequency components. In figure 10, real-time performances of a turning-
point filter (TP-filter) based on W (ω) = |ω|3 and λ = 6 is compared to the above logit-
model24. In order to accommodate for easy visual inspection, the output of the latter is
transformed according to

2Ît :=

{
2 , P̂ (It = 1|Xt, Xt−1, ...) > 0.5
0 , otherwise

TP−Filter (adjusted) vs. Logit−Model
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Figure 10: Logit-Model vs. TP-filter adjusted

Sign-flips of Ŷt− Ŷt−1 are marked by a capital ‘T’. Except for the particular TP in August
1996, the TP-filter is at least as fast or faster than the logit-model and it is completely free
of noisy random alarms. The latter contaminate the logit output after December 1997,
before August 2000 and before April 2003. The relatively large lead of the logit-model in
August 1996 is due to low time series values which bias the conditional probability of an
upswing towards one (because the sign of a is negative in 16). However, the bias induced
by extreme observations Xt in 16 is not unproblematic since the additional ‘pressure’
exerted by Xt can lead to false (random) alarms as observed in fig.10.

Table 6 summarizes the performances of fast L-D- and TP-filters as well as of the logit
model. For the concurrent DFA-filters, false alarms are registered if signs of the first
increments Ŷt− Ŷt−1 do not coincide with the trend-growth of the signal25. The TP-filter
anticipates TP’s (of the symmetric trend) in April 1995 (by two months), in December

24Details related to the choice of W and λ can be found in Wildi (2007).
25Such a simple rule is possible because the filter outputs are very smooth. L-L-filters or traditional

model-based real-time filters would require more sophisticated rules in order to account for the noisy
signal estimates.
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Logit TP L-D
Total rate of false signals 11.6% 10.6% 9.1%

Delays 6.6% 4.1% 6.6%
Anticipations 2.5% 6.5% 0.0%

Random alarms 2.5% 0.0% 2.5%

Table 6: Rate of false signals: logit-model vs. TP- and fast L-D-filters

1997 (by two months) and August 2000 (by four months). Therefore, the rate of antici-
pations is (2 + 2 + 4)/123 = 0.06526 as reported in the above table. Rows two and three
account for time shift issues and the last row measures the reliability (noise elimination)
of each method.

If anticipations are not considered as ‘errors’, which is the case in our particular leading
indicator environment, then the TP-filter performs best with a rate of false alarms (delays
exclusively) of 4.1% in real-time which is to be compared with 9.1% (random alarms and
delays) for both the logit-model and the fast L-D-filter. Random alarms (last row in the
above table) of the other two competitors are problematic because they imply that TP’s
must be confirmed which, in practice, amounts to additional time delays. Finally, note
that the apparent equilibrium of delays and anticipations of the TP-filter is a consequence
of the vanishing time delay in the whole pass-band of the filter, as can be seen from fig.11.
Disequilibria to the disadvantage of anticipations are indicative for delays in the case of
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Figure 11: Amplitude and time shift functions: fast L-D vs. TP filter (both adjusted)

the other two approaches.

26The symmetric filter can be computed on sample of length 123.
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The effect of the strong weights W (ω) = |ω|3 and λ = 6 must have incidences on the
un-weighted amplitude function in the pass-band. A distortion of the latter can be seen
in fig.11 which emphasizes that (mean-square) level-issues are deliberately sacrificed for
better TP-performances. It is worth to emphasize that the smoothing effect of the TP-
filter is very pronounced although its time delay vanishes in the pass-band. Note also that
various ‘risk-aversions’ of users can be accounted for explicitly by controlling speed and
reliability of the filter through the weights λ and W (·). Neither of these advantageous
features is explicitly accounted for by model-based approaches.

The new KOF economic barometer, launched in April 2006, relies on a real-time filter
based on the generalized ‘customized’ criterion 15. The risk-profile has been accounted
for by optimal weights λ and W (ω).

4.2 European Economic Sentiment Indicator (ESI)

The European Economic Sentiment Indicator (‘in EU’) is a monthly time series issued
by the statistical office of the Slovak Republic27. The original aggregate is processed by
a seasonal adjustment method called DAINTIES, see Franses, Paap, and Fok (2005). A
particularity of the latter procedure is that the filter is strictly one-sided too. The last
120 observations of the published (processed) time series are plotted in fig. 12. We were
not allowed to plot the raw series (before adjustment). Nevertheless, its periodogram can
be seen in the right panel of fig.12.
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Figure 12: European economic sentiment indicator and periodogram of original time
series (the latter is unpublished)

The output of a TP-filter based on λ = 12 and W (ω) = |ω|2 is compared with the pub-

27See http://www.statistics.sk/webdata/english/konja/ies ang.htm
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lished indicator in fig. 13. Vertical lines correspond to TP’s of the symmetric trend signal
10 (alternative trend definitions could be analyzed of course). As can be seen, the mean
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Figure 13: ESI: TP-filter (dashed) vs. DAINTIES

delay of the real-time filter is zero as confirmed by the time shift in the pass-band which
is plotted in fig. 14. The TP-filter leads extrema of the published indicator in April
1998 (lead by 4 months), April 1999 (lead by 4 months), June 2004 (lead by 5 months)
and February 2005 (lead by 4 months). Lags of one month, with respect to extrema
of the published series, occur during the short cycle between February 2002 and April
2003, specifically in February 2002, July 2002 and April 2003. It is worth to emphasize
that the apparent lag is falsely suggested by the noisy extrema of the published series in
these time points: in fact TP’s of the symmetric trend indicate that the TP-filter leads
in February 2002, is synchronous in July 2002 and lags in April 2003 by one month, see
fig. 13. This example demonstrates that extrema of a noisy signal should not be used as
a reference for the identification of TP’s. Note also that the DFA-filter does not generate
false alarms between consecutive TP’s because damping in the stop-band is strong, see
fig. 14. In contrast, the published indicator is noisier which implies that one has to wait
some time in order to assert the occurrence of a TP with a certain amount of certainty.

Given the advantages of the new filter design it is interesting to compare our analysis
with the appraisal by analysts of the EU: “The approach of the European Commission
to adjusting the business and consumer surveys (BCS) has always been seasonal adjust-
ment, not trend/cycle extraction, i.e. smoothing. Since the irregular component carries
information on respondents’ perception of economically relevant special events such as
strikes, elections or strong exchange rate or commodity price movements, we believe that
retaining the component is important in interpreting the data. We use this approach in
a consistent manner for all approx. 50.000 series covered by the comprehensive EU BCS
Programme, including sectoral and global composite indicators. To my knowledge, the
s.a. approach is also the dominant, if not exclusive, approach used by the national survey
institutes, which are conducting the surveys on behalf of the Commission, for their own,
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Amplitude Function TP−Filter
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Figure 14: Amplitude und time shift (the latter in the pass-band only)

national indicator releases (some do not adjust the series at all). Of course, the real-time
trend/cycle extraction approach of your DFA filter is very relevant in its own right for
the identification of the cycle and its turning points. Therefore, your work is very inter-
esting and stimulating. While the calculation and publication of such smooth indicators
representing the trend/cycle component is not among our priorities for the nearer future,
we would still be interested in learning more about the possible advantageous or com-
plementary features of your DFA approach with respect to our traditional approach of
processing the BCS data.”

We understand that many experienced users prefer original and/or seasonally adjusted
data for their own analysis. However, we feel that there is a growing market for fast and
reliable real-time trend estimates of important time series, especially for practitioners
interested in business-cycles. Our experience suggests that the new economic barometer of
the KOF is appealing to a large audience because its smooth and fast real-time dynamics
are less confusing. In this respect the new filter design would be a useful alternative
complementing traditional ‘s.a.’-indicators in the EU.

5 Conclusions

The more or less impressive gains obtained by specialized filter-designs - optimized either
for level or for turning-point applications - illustrate the importance of customized opti-
mization criteria that mate the practically relevant estimation problem28. In applications
with a strong prospective content, many people do not realize or conceive that one-step

28Level-filters are compared with respect to mean-square performances in section 3 and TP-filters are
compared with respect to speed and reliability of TP-alarms in section 4 which is consistent with the
underlying optimization criteria.
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ahead forecasting is not directly related to their particular needs. It is true that the
holly-grail of statistical principles does not prevent against these odds. We hope that the
‘spirit’ in this article contributes to question the usefulness of rigid theoretical principles
that often do not directly address the practically relevant problem. Our experience so far
strongly suggests that ‘customized’ criteria in conjunction with domain-knowledge can
alleviate mis-specification and over-fitting in practice.

Currently, the approach is extended in three directions, namely customized criteria for
financial trading29, multivariate filtering and non-linear filtering. Each extension is spe-
cific for a particular application field in which research is conducted in collaboration with
corresponding experts so that domain-specific knowledge can be fully integrated. Some
people may complain that this interaction can harm to generality. We believe that it
benefits to efficiency.
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