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Abstract

Government statistical agencies are required to seasonally adjust non-stationary
time series resulting from an aggregate of a number of cross-sectional time series.
Traditionally, this has been achieved using the X-11 or X12-ARIMA process by us-
ing either direct or indirect seasonal adjustment. However, neither of these methods
utilizes the multivariate system of time series which underlies the aggregate series.
This paper compares a model-based univariate approach to seasonal adjustment with
a model-based multivariate approach. Firstly, the univariate basic structural model
(BSM) is applied directly to the aggregate series to obtain estimates of the seasonal
components. Secondly, the multivariate basic structural model is applied to a trans-
formed system of cross-sectional series to also obtain estimates of the seasonal com-
ponents of the aggregate series. The prediction mean squared errors resulting from
each method are compared by calculating their relative efficiency. An experimental
study is conducted which fixes the parameters of the aggregate series and varies the
stochastic structure of two cross-sectional series. It is shown that gains are achievable
using the multivariate approach under certain conditions which rely on the relative
values of the parameters within and between components of the cross-sectional series.

Keywords: BSM, Kalman filter, multivariate time series, state space model,
cross-sectional time series.
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1 Introduction

Seasonally adjusted time series of economic and social data are important products of many
official statistical agencies. It is imperative that the method employed produces accurate
time series components such as the trend, seasonal and irregular components which make
up the series. Seasonal adjustment involves estimating and removing the seasonal effects
of the series. Data for a number of series is often collected, sometimes geographically or
by industry, and then aggregated to obtain a total series. Seasonal adjustment of this
aggregated series, as well as the cross-sectional series, is usually required for publication.
The most widely used seasonal adjustment method is the X-11 filter-based method, which
has progressed more recently to X-12-ARIMA. Model-based seasonal adjustment methods
are recently gaining more attention and will be the focus of this paper.

This paper proposes a model-based approach for the estimation of seasonal effects for
an aggregate series via a multivariate model. The aim is to examine if gains are achievable
when estimating the seasonal component of the total series by jointly modeling the cross-
sectional series. It is expected that under certain conditions, this procedure will enable
a more accurate estimation of the seasonal component and hence the seasonally adjusted
series compared to the estimation via a univariate approach.

When the seasonal component of a series is estimated from the aggregate series and
then removed, the process is termed direct seasonal adjustment. Alternatively, if each of
the cross-sectional series are seasonally adjusted separately, and then summed to obtain the
aggregate seasonally adjusted series, the process is termed indirect seasonal adjustment.
There is extensive debate (see Ghysels (1997), Hood and Findley (2003), Ladiray and
Mazzi (2003), and Otranto and Triacca (2002)) as to whether to seasonally adjust directly
or indirectly, usually focusing on filter-based methods. However, both direct and indirect
seasonal adjustment use univariate time series methods. The indirect approach is not
considered here, apart from taking into account the results from previous studies as a
guide to designing this study.

Only a limited amount of research has been done using a multivariate model-based
approach to seasonal adjustment. Previous research in this area has concentrated on
ARIMA-based models which have restricting assumptions on the series and are also com-
plex to implement (Planas and Campolongo (2001) and Ghysels (1997)). This study
confirms and extends previous research by utilizing the flexibility and transparency of the
basic structural model (BSM) in state space form, which can be applied to non-stationary
time series. The multivariate state space model is a straightforward extension of the uni-
variate model and due to its flexibility, multiple time series may be modeled jointly with
little difficulty. The multivariate BSM can be applied to the modeling of cross-sectional
time series with the aggregate series being the focus of attention.

A multivariate approach takes into account the links between the cross-sectional series
in order to borrow strength for the estimation of the seasonal components of the total
series. This paper will utilize the multivariate BSM for which the system of equations
is referred to as a ‘seemingly unrelated time series equations’, (SUTSE) model, (Harvey,
1989, page 429). A model proposed by Marshall (1990), decomposes the disturbance
terms into common and specific effects where the sub-series are linked by the variance
parameter of the common effect. This model is applied to the each of the components in
the multivariate BSM and then written in state space form.

The application of the Kalman filter and smoother to the state space model yields
the estimates of the time series components: the trend, comprising the level and slope
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components, the seasonal factor and irregular (or measurement error). The Kalman filter
and smoother also yield the mean squared errors of the estimated components and these
may be utilized to compare the multivariate and univariate approaches. Since the sub-
series are mostly collected routinely, the data are readily available. The estimates of the
components for each of the sub-series are not of direct interest but are calculated in order
to obtain a better estimate of the structural components of the total series.

In this paper, an experimental study is conducted which fixes the characteristics of the
aggregate series and varies the stochastic structure of the sub-series. The resulting relative
efficiency of the multivariate approach is examined. Section 2 gives a brief background of
the seasonal adjustment approaches which involve cross-sectional series and also reviews
some applications of the multivariate BSM. The BSM for the univariate and multivariate
approaches and their corresponding state space forms are detailed in Section 3 and a
measure of comparison is given in Section 4. The design of the study and parameter
settings are outlined in Section 5. Results are presented in Section 6 with concluding
remarks in Section 7.

2 Background

2.1 Seasonal Adjustment and Cross-sectional Series

A thorough discussion of the direct versus indirect methods is given in Hood and Findley
(2003) with reference to the X-12-ARIMA and the SEATS (Signal Extraction in ARIMA
Time Series) programs. In general, they comment that when the sub-series “have quite
distinct seasonal patterns and have adjustments of good quality, indirect seasonal adjust-
ment is usually of better quality than direct adjustment. On the other hand, when the
component series have similar seasonal patterns, then summing the series may result in
noise cancelation, and the direct seasonal adjustment is usually of better quality than the
indirect adjustment” (Hood and Findley, 2003, p10).

Similarly, Ladiray and Mazzi (2003, p40) state that indirect adjustment should be
preferred to direct adjustment if the “sub-components do not have similar characteristics
or if the relative importance of the sub-series (in terms of weight) is changing very fast.”
They clarify the idea of similarity of sub-series by saying that the direct approach could be
more suited to ‘horizontal’ or geographical aggregation (e.g. by country) and the indirect
approach to ‘vertical’ or sectorial aggregation, such as by sector, branch or product.

There are a number of different criteria used in assessing the quality and adequacy
of direct and indirect seasonal adjustment when using a filter-based method such as X-
12-ARIMA, see Hood and Findley (2003), Ladiray and Mazzi (2003), and Otranto and
Triacca (2002). In essence, the indirect adjustment is favoured when the sub-series have
different characteristics and direct adjustment is favoured when the sub-series are similar.

For model-based seasonal adjustment, Planas and Campolongo (2001) used ARIMA
models and found that when the stochastic properties of the two series were even slightly
dissimilar, the indirect adjustment was more precise than the direct adjustment. The mul-
tivariate adjustment was found to be the most accurate estimation in terms of the final
estimation error. However, when considering revision error, the indirect and direct meth-
ods performed better in many of the test cases than the multivariate method, thus giving
no optimality if revision errors were considered (Planas and Campolongo, 2001). They also
found multivariate estimation difficult to implement due to its complexity. Geweke (1978)
found that the covariance structure between the series is crucial. He found that the joint
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ARIMA model was advantageous when the sub-series are very heterogenous, or ‘where
the stochastic structure of the non-seasonal and seasonal components are dissimilar’.

The multivariate adjustment was found to be the most accurate estimation in terms
of the final estimation error. However, when considering revision error, the indirect and
direct methods performed better in many of the test cases than the multivariate method,
thus giving no optimality if revision errors were considered.

2.2 The Use of the Multivariate BSM

Using the basic structural model and its multivariate state space form, a target series may
be modeled jointly with one or more related series in order to obtain better estimates of the
time series components of the target series. Harvey (2000) calculates the filtered estimates
in a bivariate BSM model and discusses the improvement in the root mean squared error
(RMSE) of the slope component relative to that obtained from using the univariate model.
He shows that the gains achieved in the estimation of the slope component using the
bivariate model came primarily from the high correlation between the slopes of the two
series.

The U.S Bureau of Labor Statistics (BLS) apply state space models in estimating
monthly employment and unemployment estimates for each of the 50 states and the Dis-
trict of Columbia. The models are fitted to the direct sample estimates obtained from the
Current Population Survey (CPS) (Pfeffermann and Tiller, 2003). A filtering algorithm
is developed for state space models with correlated measurement errors. A multivariate
state space model with added constraints allows estimates to be obtained which borrow
strength from both the past data and cross-sectional data (Pfeffermann and Tiller, 2003,
p3).

Marshall (1992) applies the multivariate BSM to a variety of time series. He investi-
gates the relative efficiency of the filtered estimates as a function of both time and the
number of series. He concentrates on the estimation of the time-dependent means by using
the Kalman filter applied to the multivariate local level model, and reports that there are
gains for all the series.

Harvey and Durbin (1986) modeled the effect of seat belt legislation in Britain. They
used intervention analysis based on a structural time series model to estimate the changes
in casualty rates for different categories of road users following the legislation. Within
the BSM they used the trigonometric approach to modeling the seasonality and incor-
porated an intervention variable to model the change in the level of the series after the
introduction of the law. They comment on the flexibility of the structural model, which
allows a considerable amount of complexity to be accommodated within the model such
as explanatory and intervention variables. The model is written in state space form and
the Kalman filter is applied for estimation of the time series components, the explanatory
and intervention variables.

Durbin and Koopman (2001) also investigate the use of the structural model with
intervention variables for the seat belt data. They extend the study to a bivariate model
for the front seat passengers and rear seat passengers killed and seriously injured. The
rear seat series is used as the related series but in these circumstances it is also used as
a control group. The bivariate model results in a more precise measure of the effect of
the seat belt law on front seat passengers. In fact, the results show that the root mean
squared error is almost halved for the estimated intervention coefficient for the front seat
series.
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Sridharan, Vujic, and Koopman (2003) examine the impact of new legislation regarding
sentencing of felony offenders on reported crime rates committed on or after January 1,
1995. The multivariate BSM allows simultaneous consideration of a set of time series
where some series are considered as treatment series and others as control series. When
correlations between the components are high, it means that components will be estimated
with the combined use of more time series rather than just using the univariate series
individually. Sridharan, Vujic, and Koopman (2003) found that this procedure leads to a
more effective intervention analysis than other more traditional methods. The data only
included four years of post-intervention observations and the intervention variable was
modeled as a step variable to account for a level shift.

The flexibility of the multivariate structural time series model and the results of the
applications described above, where gains have been achieved with the joint modeling of
series motivates the current study.

3 Basic Structural Model

A structural time series model allows time series characteristics such as trend, seasonal and
error components to be modeled specifically. The series of observations of the aggregate
series, Y1, . . . , YT , will be modeled by a univariate additive BSM. If the aggregate series,
denoted by Yt, is a sum of K sub-series, for t = 1 . . . T ,

Yt =
K∑

k=1

Ykt (1)

then Y1t, . . . , YKt, may be modeled jointly with a multivariate BSM. The following sub-
sections describe the univariate and multivariate BSM models which will be used in this
study.

3.1 Univariate BSM

For a single additive time series, the population observations at time t denoted by Yt,
may be written as the sum of a local linear trend, Lt, a seasonal component, St, and an
irregular or disturbance term, εU, t, where the U subscript denotes the univariate model.
This basic structural model (BSM) may be written, in the notation adopted by Feder
(2001), for t = 1, . . . , T as

Yt = Lt + St + εU, t, εt ∼ N(0, σ2
U, ε). (2)

The trend level may be assumed to evolve stochastically over time, and may or may
not include a slope term, (for details see Harvey (1989, section 2.3)). For this study, the
trend is represented by:

Lt+1 = Lt + ηU, t, ηt ∼ N(0, σ2
U, η). (3)

The seasonal component, St, may be a simple dummy variable constrained to add to
zero over s seasons,

∑s
j=1 Sj , or over any s time periods,

∑s−1
j=0 St+1−j . If the seasonal

effects are allowed to change stochastically over time then a disturbance may be introduced
such that

s−1∑

j=0

St+1−j = ωU, t or St+1 = −
s−1∑

j=1

St+1−j + ωU, t (4)
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where ωU, t ∼ N(0, σ2
U, ω). Since the disturbance term has an expectation of zero, equation

(4) still allows the sum constraint of the seasonal effects to be zero over any s time periods.
Alternatively, the seasonal component may be modeled as a trigonometric variable (see

Harvey (1989)). Other ways of expressing the seasonal component have been suggested.
One method extends the dummy seasonal model (4) by letting each season evolve as a
random walk, see Harrison and Stevens (1976). For a comprehensive review of modeling
seasonal effects see Proietti (2000).

For this paper, the focus will be on the local level seasonal model, which is given by
equations (2), (3) with (4) and will be the univariate model adopted for the aggregate
series. The disturbance terms ηU, t, ωU, t and εU, t, are assumed to be serially and mutually
independent. The set of their variances {σ2

U, η, σ2
U, ω, σ2

U, ε} are the parameters of the
univariate model.

3.2 Multivariate BSM

A multivariate BSM will be applied to the K sub-series, Y1t, . . . , YKt for t = 1 . . . T . The
series may be linked via correlations of the disturbances driving each component. By
modeling the sub-series jointly, these correlations are included as part of the structure of
the covariance matrix for each component. Harvey (1989, Section 8.2) refers to this as
‘contemporaneous correlation’ and the model becomes a SUTSE model.

For a multivariate BSM, Marshall (1992) decomposes the disturbance terms into com-
mon effects, which are time specific, and time-unit specific effects, and relates these to the
random error terms in a dynamic error components model. Applying this idea, the local
level seasonal model for the observation for series k at time t, denoted by Ykt, is given
below with k = 1, 2, · · · ,K representing the K cross-sectional series with dummy seasonal
components.

Ykt = Lkt + Skt + εt + ε∗kt (5)

where

Lk,t+1 = Lk,t + ηt + η∗kt (6)

Sk,t+1 = −
s−1∑

j=1

Sk,t+1−j + ωt + ω∗kt (7)

The disturbance terms, εt, ε∗kt, ηt, η∗kt, ωt, ω∗kt are assumed to be independent Normal
random variables. The common effects are ηt, ωt, εt and the time-unit specific effects are
ε∗kt, η∗kt, ω∗kt.

The resulting three covariance matrices may have the following structure (Marshall,
1990):

Var(xt1K + x∗t ) = Σx = σ2
xJK + Dx∗ (8)

where

x stands for η, ω, or ε

x∗t stands for (η∗1t, . . . , η
∗
Kt)

′, (ω∗1t, . . . , ω
∗
Kt)

′, or (ε∗1t, . . . , ε
∗
Kt)

′

Dx∗ = σ2
x∗IK or Dx∗ = diag

[
σ2

1x∗ , . . . , σ
2
Kx∗

]
,

1K is a K dimensional unit vector,
IK is a K ×K identity matrix,

JK = 1K1
′
K , (a K ×K matrix of all ones).
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The two different structures for the covariance matrix Dx∗ proposed above are named
Model 1 and Model 2.
Model 1
The first and simplest covariance structure, Dx∗ = σ2

x∗IK has the unit-specific variances all
equal to σ2

x∗ . For this model, the covariance matrix for each component has a compound
symmetry structure, that is, the diagonal elements are all (σ2

x +σ2
x∗) and each off-diagonal

element is σ2
x.

Model 2
For Model 2, the K unit-specific variances are allowed to be different. There are (K + 1)
unknown parameters for each of the three component covariance matrices (namely Ση,
Σω, and Σε), giving a total of 3(K + 1) unknown parameters for model. For example,
when K = 2, the covariance matrix for the level component is

Ση =
(

σ2
η + σ2

1η∗ σ2
η

σ2
η σ2

η + σ2
2η∗

)
(9)

and similarly for Σω, and Σε. Since Model 1 is a special case of Model 2, the focus will
be on Model 2.

Since the aggregate series is the sum of the K cross-sectional series, the following
constraint applies to the variance of the level component for the aggregate series given by
the multivariate parameters:

σ2
tot,η = K2σ2

η +
K∑

k=1

σ2
kη∗ . (10)

Similarly, the constraints for the variance of the seasonal and error components are

σ2
tot,ω = K2σ2

ω +
K∑

k=1

σ2
kω∗ , σ2

tot,ε = K2σ2
ε +

K∑

k=1

σ2
kε∗ . (11)

The values of σ2
tot,η, σ2

tot,ω and σ2
tot,ε will be equal to σ2

U, η, σ2
U, ω and σ2

U, ε respectively.

3.3 State Space Form

Any BSM may be written more concisely in state space form (SSF). The Kalman filter
and the Kalman smoother may then be applied to the model to obtain estimates of the
components and their mean squared errors (MSE’s) at each time point.

3.3.1 Univariate SSF

The state space form for the set of equations (2), (3) and (4) consists of a measurement (or
observation) equation (12) and a transition (or state) equation (13). The measurement
equation describes a linear combination of the unobserved components included in the
state vector, αt. The transition equation describes the development of the state vector.
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The univariate state space model for the aggregate series may be written (Durbin and
Koopman, 2001, section 3.1) as:

Yt = Zαt + εt (12)
αt+1 = Tαt + Gγt (13)

where, for quarterly data (s=4), and a dummy seasonal component,

αt = [Lt, St, St−1, St−2]
′
, α1 ∼ N(a1,P1)

γt = [ηU, t, ωU, t]
′
, γt ∼ N(0,Q)

Z =
(
1 1 0 0

)
, εU, t ∼ N(0, H)

T =




1 0 0 0
0 −1 −1 −1
0 1 0 0
0 0 1 0


 G =




1 0
0 1
0 0
0 0




Var (Gγt) = GQG′ =




σ2
U, η 0 0 0
0 σ2

U, ω 0 0
0 0 0 0
0 0 0 0


 H = σ2

U, ε (14)

It is assumed that the initial state vector, α1, has a mean and variance given by E(α1) = a1,
and Var(α1) = P1.

In general, αt is a p × 1 vector, where p is the number of unobserved components to
be estimated. A local level seasonal BSM with a dummy seasonal component (s = 4) for
quarterly data, will have p = 1 + (s − 1) = 4, as given above. If the data is monthly
(s = 12), then the same model will have p = 1+ s− 1 = 12. The u× 1 vector, γt, contains
the disturbance terms which apply to the state vector, here u = 2 . The 1×p matrix, Z is
a selection matrix for the measurement equation whereas T, (p× p matrix) and G, (p×u
matrix) apply to the transition equation.

3.3.2 Multivariate SSF

The multivariate BSM or SUTSE model (5) - (7) would usually be written in state space
form in a similar way to the univariate SSF (refer to (12) and (13)), with the measurement
errors separate to the state vector. This conventional format requires uncorrelated mea-
surement errors, that is, the covariance matrix, Σε, is assumed to be diagonal. However,
due to the common disturbance term, εt, the multivariate BSM contains correlated mea-
surement errors, which cannot be handled by the standard Kalman filter or by standard
software packages. To overcome this problem, Durbin and Koopman (2001, Section 6.4)
suggest including the measurement errors in the state vector resulting in α(m),t, which has
p = 1 + (s− 1) + 1 = 5 and u = 3.

The state space form is amended to allow for these different dimensions for the mul-
tivariate system of cross-sectional series Y1t, . . . , YKt, as given below. The amended state
space form has the (m) subscript to denote the multivariate model.

Y(m),t = (Z(m) ⊗ IK)α(m),t (15)
α(m),t+1 = (T(m) ⊗ IK)α(m),t + (G(m) ⊗ IK)γ(m),t (16)
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For quarterly data, and a dummy seasonal component in Model 2,

Y(m),t = [Y1t, . . . , YKt]
′

α(m),t = [L1t, . . . , LKt, S1t, . . . , SKt, S1,t−1, . . . , SK,t−1,

S1,t−2, . . . , SK,t−2, (εt + ε∗1t), . . . , (εt + ε∗Kt) ]
′

(17)
γ(m),t = [ (ηt + η∗1t), . . . , (ηt + η∗Kt), (ωt + ω∗1t), . . . , (ωt + ω∗Kt),

(εt+1 + ε∗1,t+1), . . . , (εt+1 + ε∗K,t+1)
]′

The system matrices are given by

Z(m) =
(
1 1 0 0 1

)

T(m) =




1 0 0 0 0
0 −1 −1 −1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0




G(m) =




1 0 0
0 1 0
0 0 0
0 0 0
0 0 1




(18)

V ar
(
(G(m) ⊗ IK)γ(m),t

)
=




Ση 0 0 0 0
0 Σω 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 Σε




(19)

If K = 2, the covariance matrix for the level component, Ση, is given by (9) and similarly
for Σω and Σε.

3.3.3 Applying a Transformation

The aggregate series is the series of interest here rather than the individual sub-series.
In order to straightforwardly estimate the components of the aggregate series within the
multivariate framework, a transformation on the multivariate state space model is required.
The transformation allows the aggregate series to be included as one of the multivariate
series. Let A be a K×K transformation matrix

A =




1 1 1 . . . 1 1
1 0 0 . . . 0 0
0 1 0 . . . 0
...

. . .
...

0 0 0 . . . 1 0




=




1 1 . . . 1
0

I(K−1)

...
0


 (20)

Using A to obtain the transformed data, the aggregate series becomes augmented to
the set comprising of series 1 to series (K − 1). This data set will be referred to as the
‘transformed’ data.

A (Y1,t, Y2,t, . . . , YK,t)
′
= (Ytot,t, Y1,t, . . . , YK−1,t)

′
. (21)
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Applying the transformation to the state space model in (15) and (16), gives

Y(M),t = AY(m),t = A(Z(m) ⊗ IK)α(m),t

= (Z(m) ⊗ IK)(Ip ⊗A)α(m),t

= (Z(m) ⊗ IK)α(M),t (22)

α(M),t+1 = (Ip ⊗A)α(m),t+1

= (T(m) ⊗ IK)(Ip ⊗A)α(m),t + (Ip ⊗A)(G(m) ⊗ IK)γ(m),t

= (T(m) ⊗ IK)α(M),t + (IpG(m) ⊗AIK)γ(m),t

= (T(m) ⊗ IK)α(M),t + (G(m) ⊗ IK)(Iu ⊗A)γ(m),t

= (T(m) ⊗ IK)α(M),t + (G(m) ⊗ IK)γ(M),t. (23)

The matrices Z(m), T(m) and G(m) from (18) remain unchanged. However α(m),t, and
γ(m),t are renamed with the (M) subscript to allow for the transformed elements, see (26)
- (27) below. The transformed model has the state space form:

Y(M),t = Z(M)α(M),t (24)
α(M),t+1 = T(M)α(M),t + G(M)γ(M),t (25)

where

Z(M) = Z(m) ⊗ IK , T(M) = T(m) ⊗ IK , G(M) = G(m) ⊗ IK

α(M),t = [Ltot,t, L1,t, . . . , LK−1,t, Stot,t, S1,t, . . . , SK−1,t,

Stot,t−1, S1,t−1, . . . , SK−1,t−1, Stot,t−2, S1,t−2, . . . , SK−1,t−2,

εtot,t, (εt + ε∗1t), . . . , (εt + ε∗K−1,t)
]′

(26)
γ(M),t =

[
ηtot,t, (ηt + η∗1t), . . . , (ηt + η∗K−1,t),
ωtot,t, (ωt + ω∗1t), . . . , (ωt + ω∗K−1,t),

εtot,t+1, (εt+1 + ε∗1,t+1), . . . , (εt+1 + ε∗K−1,t+1)
]′

(27)

where

ηtot,t = Kηt +
K∑

k=1

η∗kt ωtot,t = Kωt +
K∑

k=1

ω∗kt εtot,t = Kεt +
K∑

k=1

ε∗kt (28)

γ(M),t ∼ N(0,Q(M))

Var
(
G(M)γ(M),t

)
= G(M)Q(M)G

′
(M) =




Σ(M),η 0 0 0 0
0 Σ(M),ω 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 Σ(M),ε




(29)

If K = 2, the covariance matrix for the level component is given by

Σ(M),η = AΣηA′ =
(

σ2
tot,η 2σ2

η + σ2
1η∗

2σ2
η + σ2

1η∗ σ2
η + σ2

1η∗

)
(30)

with σ2
tot,η = 4σ2

η + σ2
1η∗ + σ2

2η∗ from (10). Similarly for Σ(M),ω and Σ(M),ε.
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3.4 Application of the Kalman Filter

A linear Gaussian state space model may be analysed by applying the Kalman filter and
Kalman smoother to the observations. The Kalman filter provides the optimal estimator
of the state vector at time t, taking into account observations up to time t, via a forward
recursion. Denote the information provided by Y1, Y2, . . . , Yt, as Ft when t < T . The
Kalman smoother further improves the component estimates and provides the optimal
estimator of the state vector at time t < T , taking into account all the observations in
the sample, Y1, Y2, . . . , YT .

The properties of the components in the state vector, conditional on the set Ft, are
(Durbin and Koopman, 2001):

at+1 = E(αt+1|Ft) and Pt+1 = Var(αt+1|Ft). (31)

3.4.1 Kalman Filter for the Univariate Model

The standard set of filtering equations may be found in Chapter 4 of Durbin and Koopman
(2001). For the univariate local level seasonal BSM in state space form, as described in
(12) and (13), with corresponding system matrices (14), these are given by:

at+1 = Tat + Ktνt

Pt+1 = TPtL
′
t + GQG

′
(32)

where

νt = Yt − Zat = Zαt + εU, t − Zat

Ft = Var(νt) = ZPtZ
′
+ H, H = Var(εt)

Kt = TPtZ
′
F−1

t

Lt = T−KtZ. (33)

The state vector estimator, at|t, and its corresponding error variance matrix, Pt|t, are

at|t = E(αt|Ft) = at + MtF−1
t νt

Pt|t = Var(αt|Ft) = Pt −MtF−1
t M

′
t (34)

where Mt = PtZ
′
, and then the updating equations are defined as

at+1 = Tat|t
Pt+1 = TPt|tT

′
+ GQG

′
(35)

The application of the Kalman filter is performed with the SPLUS FinMetrics soft-
ware using the set of functions collectively called the SsfPack, (Koopman, Shephard, and
Doornik, 1999). The variance matrix, P1, of the initial state vector α1, is assumed to have
the form

P1 = κP∞ + P∗ (36)

where κ is a scalar value, P∗ is the covariance matrix of the stationary components in α1

and P∞ is the covariance matrix of the non-stationary components in α1, (Zivot, Wang,
and Koopman, 2004). Diffuse initial conditions are handled with the exact initial Kalman
filter where the filter equations are derived as κ → ∞. This approach is described in
Durbin and Koopman (2001, Section 5.2).

In particular, for the univariate local level seasonal model, a1 = E(α1) is a 4× 1 zero
vector, P∞ is a 4× 4 identity matrix and P∗ is a 4× 4 zero matrix.
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3.4.2 Kalman Filter for the Transformed Model

The Kalman filter equations (32) to (35) need to be amended for the state space form
given by (24) and (25), where the measurement error has been placed within the state
vector, and corresponding system matrices (Z(M),T(M),G(M),Q(M)) are included in (26)
- (29). Only one equation listed in (33) requires modification, (apart from subscripts).
That is the equation for Ft, which becomes

F(M), t = Z(M)P(M), tZ
′
(M) (37)

since H=0, and the Q(M) = Var(γ(M), t) matrix now includes the Σ(M),ε as shown in (29).
To compensate for this restructuring of the state vector, the set up of the exact initial

conditions matrices described in Durbin and Koopman (2001, Section 5.2) are amended.
The P∗ matrix which holds the variance of the stationary part of α1, instead of being a
zero matrix, now includes the Σ(M),ε covariance matrix in the lower right (K ×K) block
diagonal. All other elements of the (5K × 5K) matrix are zero. The P∞ matrix (also
of dimension 5K × 5K) therefore becomes zero in the corresponding position and the
remaining main diagonal elements are 1. For further details of the exact initialisation of
the filter see Koopman and Durbin (2000).

A simplification of the multivariate filtering process is described in Durbin and Koop-
man (2001, Section 6.4) where the elements of the observational vectors are brought into
the analysis individually. This method basically converts the multivariate series into a uni-
variate series and allows computational savings and simplifies the initialisation process.
This method is applied in the SsfPack of functions in SPLUS.

4 Comparison of Univariate and Multivariate Methods

The main focus of this paper is to determine whether the use of the sub-series improves the
estimates of the unobserved components of the aggregate series and hence the seasonally
adjusted aggregate series. Therefore, we will compare results from the univariate model
with those from the transformed multivariate model.

4.1 Variance of the seasonally adjusted series

The question arises as to how to calculate the accuracy of the seasonally adjusted series
when a state space model is applied. Harvey (1989) explains that when the optimal esti-
mator of the seasonal component is obtained by the smoothing algorithm and subtracted
from the original series to give the seasonally adjusted series,

Y a
t|T = Yt − Ŝt|T t = 1, . . . ,T (38)

then, ‘the RMSE of Ŝt|T , and hence Y a
t|T , is also given by the smoother’ (Harvey, 1989,

p303). An advantage of the structural model-based approach to seasonal adjustment is
that it estimates the variance of the seasonally adjusted series as a by-product of estimating
the seasonally adjusted series (Jain, 2001).

Burridge and Wallis (1985) answer this question for the Kalman filter formulation
of signal extraction methods in more detail. They note that this is applicable to non-
stationary time series and for stationary series it is equivalent to the Wiener-Kolmogorov
theory as applied in Planas and Campolongo (2001). They state that the appropriate
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measure of the accuracy of the adjusted data is the error variance of the seasonal com-
ponent estimate, conditional on the data. Thus, for the current-adjusted series, Y a

t|t, the
error variance of the seasonal component estimate, conditional on the data, is given by
MSE(Ŝt|t). Note that the current-adjusted series can be viewed as the preliminary sea-
sonally adjusted series as it is conditional on observations up to time t. This is the error
variance given by the Kalman filter as calculated in the matrix Pt|t, given by (34), for the
element pertaining to the seasonal component.

In the following study, the value of MSE(Ŝtot,t|t) using the transformed multivariate
model, given the multivariate parameters, is denoted by MSE(ŜM

t|t ). For the univariate

method, given the total (or univariate) parameters, MSE(Ŝtot,t|t) is denoted by MSE(ŜU
t|t).

The relative efficiency ratio for the filtered estimates is given by

REkf (M) =
MSE(ŜU

t|t)

MSE(ŜM
t|t )

, t = 1 . . . T (39)

and can be considered as a preliminary estimate of the equivalent measure which uses the
MSE of the smoothed seasonal component. The REkf (M) measure over t is the quantity
of interest in the comparison of the multivariate method with the univariate method.

5 Design of the Study

In the discussion on direct versus indirect adjustment in Section 2.1, a number of authors
agreed that when the series have similar patterns, direct adjustment is favoured and alter-
natively, when the series have dissimilar patterns, indirect adjustment is favoured. From
the work carried out by Geweke (1978) and Planas and Campolongo (2001), particular
attention needs to be given to the relationship of parameters between the sub-series and
between components.

5.1 Setting the Parameters

The parameters in the multivariate state space model are the variances of the disturbance
terms. These parameters are found in the covariance matrices, Ση, Σω and Σε. The
specification of their structure will be called the ‘design’ of the sub-series.

In order to examine the behaviour of the relative efficiency of the multivariate method
with two sub-series, (K = 2), the design will be varied. The series 1 parameter values
need to vary from those for series 2 within components, from being the same (as given by
Model 1), to being very different (as given by Model 2), as defined in Section 3.2. Also,
the structure of the covariance matrices for the non-seasonal components and the seasonal
component need to be considered relative to one another.

Let c be the ratio of the variances between sub-series 1 and 2 within each component.
The variance of the level component for series k is given by

Var(Lkt) = Var(ηt + η∗kt)
= σ2

η + σ2
k,η∗ ,

then the c-ratio for the level component is defined as

cη =
Var(L1t)
Var(L2t)

=
σ2

η + σ2
1,η∗

σ2
η + σ2

2,η∗
(40)
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Similarly, the c-ratios for the seasonal and error components are given respectively by:

cω =
σ2

ω + σ2
1,ω∗

σ2
ω + σ2

2,ω∗
, cε =

σ2
ε + σ2

1,ε∗

σ2
ε + σ2

2,ε∗
. (41)

If cη = cω = cε = 1 then Model 2 reverts back to Model 1, which is the compound
symmetry case where each diagonal element has the same value. This would mean that
for each component the same properties apply between series. For the seasonal component,
it does not mean that the seasonal patterns are the same, but the degree of stability of
the seasonal component is the same.

To emulate the ‘slightly dissimilar’ case to the ‘strongly dissimilar’ case, as in Planas
and Campolongo (2001), the values of the c-ratios will be varied. The term ‘dissimilar’ here
applies to the stochastic behaviour of the component, ranging from almost deterministic
to very stochastic. For a dissimilar case, it would mean a value of c much greater than 1
or a small fractional value.

In this study, we let the c-ratios vary in the set {1, 5, 10, 20} or their reciprocals {1,
0.2, 0.1, 0.05}. Furthermore, to set a design where ‘the stochastic structure of the non-
seasonal and seasonal components are dissimilar’, the c-ratios would need to be dissimilar
between components, and so for one component, it could be greater than one, and for
another component it could be less than one.

With this in mind, a set of designs for the sub-series may be formulated and are named
in the following tables. Table 1 shows Design (a) where all c-ratios are greater than or
equal to one. Note that cη and cε have been set to the same value in each design thereby
reducing the number of combinations considered and setting the focus on the seasonal
c-ratio, cω. Design (b) given in Table 2, has cω > 1 but has the reciprocal of these values
for cη and cε.

Design (a) cη and cε

1 5 10 20
cω 1 a11 a12 a13 a14

5 a21 a22 a23 a24
10 a31 a32 a33 a34
20 a41 a42 a43 a44

Table 1: Sub-Series Design (a): cω ≥ 1, and cη, cε ≥ 1

Design (b) cη and cε

0.2 0.1 0.05
cω 5 b22 b23 b24

10 b32 b33 b34
20 b42 b43 b44

Table 2: Sub-Series Design (b): cω > 1, and cη, cε < 1

In addition to the setting of the c-ratios, the correlation between the series due to the
common disturbance term, needs to be considered for each component. For this study, the
correlation values for the seasonal component, ρω, is set to one of the following values {0.1,
0.3, 0.5, 0.7, 0.9}. For the level and error components, the correlation values (ρη and ρε)
considered are {0.2, 0.4, 0.6, 0.8}. The choice of these values means that the homogeneous
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case, where the covariance matrices are proportional to one another, (Harvey, 1989, Section
8.3) is avoided for certain combinations of the c-ratios described above. The design table,
naming the correlation combinations is given in Table 3.

Correlations ρη and ρε

0.2 0.4 0.6 0.8 1.0
ρω 0.1 A1 B1 C1 D1 E1

0.3 A2 B2 C2 D2 E2
0.5 A3 B3 C3 D3 E3
0.7 A4 B4 C4 D4 E4
0.9 A5 B5 C5 D5 E5

Table 3: Correlation design combinations for ρω, ρη, and ρε

For example, the design ‘A1a23 ’ refers to when cω = 5, cη, cε = 10, ρω = 0.1, and
ρη, ρε = 0.2. Not all of the correlation designs will be possible for each of the c-ratio
design combinations due to the restrictions and constraints on the multivariate variance
parameters which are explained in the next section.

The 9 parameters in the multivariate model may be expressed in terms of the design
of the model defined by {cη, cω, cε, ρη, ρω, ρε, σ

2
tot,η, σ

2
tot,ω, σ2

tot,ε}.

5.2 Application of Constraints

The aggregate series will be fixed as a case study but the design of the underlying sub-series
will be varied. The variance parameters for the total series are set with

σ2
tot,η = 0.01, σ2

tot,ω = 1, σ2
tot,ε = 1, (42)

and will therefore be applied to the univariate method.
With these given univariate parameters, as well as the c-ratios, the correlations, and

the constraints given in (10) and (11), the multivariate parameters for each component
can be determined by solving a set of simultaneous equations. For example, the seasonal
component equations are:

σ2
tot,ω = 4σ2

ω + σ2
1ω∗ + σ2

2ω∗ , cω =
σ2

ω + σ2
1,ω∗

σ2
ω + σ2

2,ω∗
, ρω =

σ2
ω√

(σ2
ω + σ2

1,ω∗)(σ2
ω + σ2

2,ω∗)
(43)

which, when solved in terms of σ2
tot,ω, cω and ρω, and noting that each of these are positive,

give

σ2
ω =

ρω
√

cωσ2
tot,ω

1 + cω + 2ρω
√

cω
, σ2

1,ω∗ =
σ2

tot,ω(cω − ρω
√

cω)
1 + cω + 2ρω

√
cω

, σ2
2,ω∗ =

σ2
tot,ω(1− ρω

√
cω)

1 + cω + 2ρω
√

cω
. (44)

Since σ2
1ω∗ ≥ 0, σ2

2ω∗ ≥ 0 and σ2
ω > 0 then the restrictions on the correlation values are

such that

if cω ≥ 1, then 0 < ρω ≤ 1√
cω

,

and if cω < 1, then 0 < ρω ≤ √
cω (45)

and similarly for the level and error components.
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Given the 9 exact multivariate parameters, the data for Y1t and Y2t are generated from
the multivariate model equations for t = 40 + T as described in (5) and (7), with starting
values L1 = 5, S1 = −1.5, S0 = −1, S−1 = 0.5 for both series. The first 40 data points of
each series are discarded, leaving the t = 1 . . . T simulated quarterly observations required.
For this study, T is set to 40, giving 10 years of quarterly data. The length of the series
is therefore adequate to examine the behaviour of the relative efficiency ratio over time.

The series are summed contemporaneously, Ytot,t = Y1t + Y2t to obtain the simulated
aggregate series. Note that since exact parameters are applied to the model, only one
realisation of the data is required in order to obtain the MSE’s of the seasonal component.
This is because the theoretical expressions for the MSE values only rely on the parameter
values and not on the observations. Exact parameters will be applied here so that the
effect of the design on the relative efficiency ratio is not obscured by the values of the
estimated parameters. The effect of estimation is included in a forthcoming study.

6 Results: Effect of the parameters of the sub-series

The relative efficiency of the seasonal component calculated with the univariate (or direct)
method and with the multivariate method is given by REkf (M). This measure is deter-
mined for each design specified in Tables 1 and 2 using the exact parameters. To obtain
an overview of these results, the same correlation combination is chosen for each design,
that is A1, where ρω = 0.1 and ρη, ρε = 0.2.

Figure 1 shows the results over t = 1 . . . 40 for the 16 different ‘a’ designs. For
t = 1 . . . 4, the relative efficiency is exactly one. However, from t = 5, gains using the
multivariate method are achievable for some, but not all, of the ‘a’ designs and vary in
magnitude and over time. For those designs which do achieve gains, the gains climb in
the next few time points to reach a steady value. The amount of time it takes for this
converged value to occur depends on the design. For example, design a41 has the largest
relative efficiency at T = 40, REkf (M) = 1.29, which translates to a gain of approximately
22.7%, but has the slowest rate of convergence.

The next few highest gains are for designs a31, a14 and a13 respectively. Note that
a41 has cω = 20 and cη, cε = 1, and a31 has cω = 10 and cη, cε = 1, both with a high
c-ratio for the seasonal component. For the design a14, cω = 1, cη, cε = 20 and for design
a13, cω = 1, cη, cε = 10. Thus, the four ‘a’ designs which give the highest REkf (M)
result, have either a high between-series c-ratio for the seasonal component or a high
between-series c-ratio for the non-seasonal components, but not both. The result is higher
if the two c-ratios defining the design are at opposite ends of the scale. So, even when
the variances for the two series are the same for the seasonal component (cω = 1), if the
variances of the non-seasonal components are largely different (high cη, cε), a gain is still
achievable (although not as large) for the aggregate seasonal component.

To explore the differences among the ‘a’ designs in more detail, we focus on REkf (M)
at T = 40 for each design, found in Table 4. The lowest results for the relative efficiency
belong to the designs which have cω = cη = cε, namely, a11, a22, a33, and a44. Note that
for a11, cω = cη = cε = 1 and this design represents the compound symmetry case, (Model
1). Even when all the c-ratios are high, as in a33 and a44, where the series are largely
dissimilar for all components, the fact that they are equal, overrides the between-series
effect. Thus, when the c-ratios are equal, the design of the covariance matrices become
closer to a homogeneous state.
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Figure 1: REkf (M) for seasonal component with Design A1 for a11 to a44.

Design (a) cη and cε

1 5 10 20
cω 1 a11 1.0000 a12 1.0674 a13 1.1158 a14 1.1588

5 a21 1.0929 a22 1.0005 a23 1.0045 a24 1.0178
10 a31 1.1837 a32 1.0152 a33 1.0008 a34 1.0021
20 a41 1.2945 a42 1.0454 a43 1.0124 a44 1.0010

Table 4: Results for REkf (M) for seasonal component at T=40 for sub-series Design (a)
with A1 ( ρω = 0.1, and ρη, ρε = 0.2)

The ‘b’ designs use the reciprocal of the values of cη, cε given in the ‘a’ designs and
the results over time are shown in Figure 2. The results show a similar pattern for
REkf (M) over time, however, the magnitude is much greater than for the ‘a’ designs,
with 9 designs giving an REkf (M) of over 1.25. The largest gain is achieved by design
b44 (cω = 20, cη, cε = 0.05) , with REkf (M) = 2.48 at T = 40. This translates to a gain
of almost 60% for the multivariate method. Again, it can be seen that the designs where
cω is very different from cη and cε, for example b44, b43, b34, give the highest gains. The
numerical results for T = 40 for each ‘b’ design are given in Table 5.

The correlation combination in all ‘a’ and ‘b’ designs discussed so far, is identical and
labeled A1, where ρω = 0.1 and ρη, ρε = 0.2. Therefore, even when the correlation values
between the series are small, large gains are attainable with the size of the gain depending
on the design structure.

Three designs have been chosen to determine the effect of increasing the seasonal
correlation for the ‘a’ design. Firstly, designs a12, a13 and a14 have been analysed with
correlation combinations A1 to A5, which keep the non-seasonal correlation coefficient
low at 0.2, while allowing the seasonal correlation to be one of {0.1, 0.3, 0.5, 0.7, 0.9}
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Figure 2: REkf (M) for seasonal component with Design A1 for b22 to b44.

Design (b) cη and cε

0.2 0.1 0.05
cω 5 b22 1.3728 b23 1.5063 b24 1.6158

10 b32 1.6060 b33 1.8108 b34 1.9818
20 b42 1.9014 b43 2.2125 b44 2.4820

Table 5: Results for REkf (M) for seasonal component at T=40 for sub-series Design (b)
with A1 ( ρω = 0.1, and ρη, ρε = 0.2)

as defined in Table 3. Figure 3 shows these results for t = 1 . . . 40 and with the same
vertical scale. The seasonal correlation does impact the result for the REkf (M) for the
seasonal component as would be expected. The plots show that as the seasonal correlation
increases, and the non-seasonal correlation is kept low, the relative efficiency also increases,
but the increase is dependent upon the design structure, and does not appear to be in
constant increments. As the non-seasonal c-ratio increases across the designs from 5 (a12 )
to 10 (a13 ) and then to 20 (a14 ), the effect of the seasonal correlation coefficient intensifies
as shown in the three plots in Figure 3.
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Figure 3: REkf (M) for seasonal component for A1 - A5 for Designs a12, a13 and a14.

By taking the results for the last time point (i.e.T=40) from each time series within
each plot in Figure 3, the positive relationship between the seasonal correlation and the
REkf (M) value is shown more clearly. Figure 4 shows these results as well as those for
design a11. Firstly, for the compound symmetry design a11, the result for the relative
efficiency remains constant at 1 as the seasonal correlation increases. The gradient of the
curve increases from design a12 to design a13 to the steepest curve for design a14, thus
as the cη, cε non-seasonal c-ratios increase from 5 to 10 to 20.

It is now appropriate to determine the effect of increasing the non-seasonal correla-
tion whilst keeping the seasonal correlation constant. The designs a21, a31, a41 will be
analysed for correlation combinations A1 to E1. Hence, the seasonal correlation will be
kept at ρω = 0.1, and the non-seasonal correlations ρη, ρε will be one of {0.2, 0.4, 0.6, 0.8,
1.0}. Figure 5 shows the time series plots of the REkf (M) value for the three designs a21,
a31, a41 respectively with the same scale on the vertical axis. Here it is the non-seasonal
correlation which is increasing, and the relative efficiency of the seasonal component is still
affected. For design a21, where the cω = 5 and the cη, cε = 1, the effect of increasing the
non-seasonal correlation is quite small as shown in Figure 5(a). For design a31, where the
cω = 10 and the cη, cε = 1, it can be seen in Figure 5(b) that the improvement is greater
as the non-seasonal correlation increases, and then even more so for design a41 where the
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Figure 4: Seasonal correlation versus REkf (M) at T=40 for Designs a11, a12, a13, a14
for A1-A5.

cω = 20 as shown in Figure 5(c).
The results for T=40 from each of the series shown in Figure 5, have been plotted

against the non-seasonal correlation and given in Figure 6. The plot also shows the results
for design a11, and overall the results are similar to those shown in Figure 4. Again, it
can be seen that the impact of the increasing non-seasonal correlation is dependent upon
the design of the structure. There seems to be an interaction between the magnitude of
cω and the non-seasonal correlation since the gradient of the curve increases as both cω

and ρη, ρε increase.
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Figure 5: REkf (M) for seasonal component for A1 - E1 for Designs a21, a31 and a41.
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Figure 6: Non-seasonal correlation versus REkf (M) at T=40 for Designs a11, a21, a31,
a41 for A1-E1.
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7 Conclusion

This case study looks at the relative efficiency of the seasonally adjusted aggregate series
by using a multivariate structural time series model in state space form applied to the
non-stationary sub-series. It extends the work carried out by Geweke (1978) who studied
the accuracy of the seasonally adjusted series for stationary time series using spectral
densities. Planas and Campolongo (2001) apply some of the results for the multivariate
case in Geweke (1978) but also used ARIMA models to describe the sub-series.

The time series considered here are non-stationary and the model structure for a BSM
is very different to the structure of an ARIMA model, however, on the whole, the results
from this study give similar conclusions and show that gains are possible with the use of
the sub-series when a multivariate model is applied.

This study focuses on one particular seasonal local level aggregate series and determines
a number of designs for two underlying sub-series. Keeping constraints for the aggregate
parameters, the exact multivariate parameters are determined with reference to the ratios
of the variances of the sub-series and also the correlations for each of the seasonal and
non-seasonal components. Gains are attainable under certain conditions which all rely
on the values of the parameters of not only the seasonal component but also the non-
seasonal components. The between-series (i.e. within components) and the within-series
(i.e. between components) relationships for the two series have been studied and both
impact the relative efficiency. The results are best summarised under five main points.

Firstly, when the two sub-series have the same variance parameters for both the sea-
sonal and non-seasonal components (c-ratios are all equal to 1), then there is no difference
between the multivariate and the univariate methods. In addition, there is very little
difference in the methods when the c-ratios are equal but have a value greater than 1.
This is due to the design being close to the homogeneous system. This first point confirms
the ‘similar’ patterns case studied by (Planas and Campolongo, 2001, p21) who found
that “the direct and multivariate adjustments tend to coincide and yield nearly equal
estimation errors” when using ARIMA-based models.

Secondly, the results for the relative efficiency measure are higher when the c-ratio for
the seasonal component is very different to the the c-ratio for the non-seasonal component
even if all c-ratios are greater than 1 as in design ‘a’. The magnitude of the relative
efficiency measure becomes much greater if the c-ratio for one component (e.g. seasonal)
is greater than one but for the other(s) (i.e. non-seasonal) component it is less than one,
as in design ‘b’. This confirms the point made by Taylor in his comments to Geweke’s
paper (Geweke, 1978, p432) where he states that “where the stochastic structure of the
non-seasonal and seasonal components are dissimilar, the relative efficiency of the optimal
procedure is quite high”. This study shows that even when the correlations between the
series are low, this statement holds true.

Thirdly, if the c-ratios are held constant and the non-seasonal correlation remains
fixed at a low value, then if the seasonal correlation is increased incrementally, the relative
efficiency improves, but the extent of the increase depends on the design structure. If
the series are described by Model 1, where c-ratios are all equal to 1, then increasing the
correlation has no effect on the relative efficiency. Thus, the between components effect
overrides the within components effect in regard to the common disturbance term. If
the series are quite similar, the increasing seasonal correlation does increase the relative
efficiency but this is magnified if the series have dissimilar c-ratios for the seasonal and
non-seasonal components. Hence for Model 2, designs with opposing correlation levels
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perform better.
A similar result holds if the seasonal correlation remains fixed at a low value and the

c-ratios are kept fixed, and then the non-seasonal correlation is increased. The relative
efficiency for Model 2 increases as the non-seasonal correlation increases away from the
value of the seasonal correlation. Thus, better gains are achieved when the seasonal and
non-seasonal correlations are at opposite ends of the (positive) correlation scale.

The last two points extend the work done by Geweke (1978) and look more closely
at the effect of the different correlation combinations with respect to the dissimilarity of
seasonal and non-seasonal stochastic structures. The results plotted over time, show that
there is definitely a dependency or interaction between these measures when determining
the relative efficiency of the seasonally adjusted series for the multivariate and univariate
methods.

Lastly, this study also looks at the relative efficiency over time which is not discussed
by either of the previously mentioned authors. For the first 4 time points in this study, the
multivariate method and univariate method yield exactly the same MSE’s for the filtered
estimates. As time progresses, the relative efficiency increases above 1 for each simulation
carried out in this study. There are different rates of convergence but on the whole, each
plot shows a time series which reaches a steady state. Those with higher c-ratios for the
seasonal component tend to be slowest to converge. Increasing the seasonal correlation also
has an impact on the rate of convergence. As the correlation increases, the rate becomes
slower. However, when the non-seasonal correlation is increased, the rate of convergence
for the relative efficiency seems to remain fairly constant.

This paper reports the results of a preliminary study with respect to the multivariate
BSM and aggregate time series. Other related work in progress includes the development
of an indicator measure, extension of the number of sub-series, a grouping criteria and
shortened time spans.
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